vault backup: 2024-11-11 13:30:41
This commit is contained in:
parent
b3f7fb1259
commit
f938e2e24e
@ -20,3 +20,65 @@ If f(0)=0 and J has n_s eigenvalues with negative real part, n_u eigenvalues wit
|
|||||||
Then there exists an n_c dimensional center manifold $W_c$ of a class $C^r$ which is tangent to $E_c$.
|
Then there exists an n_c dimensional center manifold $W_c$ of a class $C^r$ which is tangent to $E_c$.
|
||||||
|
|
||||||
Examples in class slides.
|
Examples in class slides.
|
||||||
|
|
||||||
|
Here's a more structured version of your notes, which could help with readability:
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
# Nonlinear Dynamics: Manifolds and Critical Points
|
||||||
|
|
||||||
|
### Case 1: Hyperbolic Critical Point
|
||||||
|
If the critical point is **hyperbolic**, we can proceed with linearization:
|
||||||
|
- Linearize around the critical point.
|
||||||
|
- Analyze **eigenvalues** and **eigenvectors** to identify different **manifolds**.
|
||||||
|
|
||||||
|
### Case 2: Non-Hyperbolic Critical Point
|
||||||
|
If the critical point is **non-hyperbolic**, further techniques are required.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Assume a critical point $\vec{P} \in \mathbb{R}^3$ for the system:
|
||||||
|
$$ \dot{X} = F(x), \quad x \in \mathbb{R}^3 $$
|
||||||
|
|
||||||
|
Define the **stable** and **unstable manifolds** of point $\vec{P}$ as:
|
||||||
|
$$ W_s(\vec{P}) = \left\{ x : \lim_{t \to +\infty} \phi(t, x) = \vec{P} \right\} $$
|
||||||
|
$$ W_u(\vec{P}) = \left\{ x : \lim_{t \to -\infty} \phi(t, x) = \vec{P} \right\} $$
|
||||||
|
- \( W_s \): **Stable Manifold** (forward in time).
|
||||||
|
- \( W_u \): **Unstable Manifold** (backward in time).
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Theorem: Existence of Stable and Unstable Manifolds
|
||||||
|
Given:
|
||||||
|
- \( x \) is a differential equation system in \( \mathbb{R}^n \).
|
||||||
|
- \( f \in C^1(E) \), with \( E \) an open subset of \( \mathbb{R}^n \) containing the origin.
|
||||||
|
- \( f(0) = 0 \) and the Jacobian \( J \) has \( n \) eigenvalues with non-zero real parts (**Hyperbolic**).
|
||||||
|
|
||||||
|
Then:
|
||||||
|
- In a small neighborhood around \( x \approx 0 \), stable and unstable manifolds \( W_s \) and \( W_u \) of the linearized system exist:
|
||||||
|
$$ \dot{x} = Jx $$
|
||||||
|
- **Tangency Condition**: \( W_s \) and \( W_u \) are tangent to the eigenspaces \( E_s \) and \( E_u \) at \( x = 0 \).
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Non-Real Eigenvalues
|
||||||
|
When eigenvalues do not have a real part:
|
||||||
|
|
||||||
|
- Define the **Center Manifold** \( W_c \) and **Center Eigenspace** \( E_c \).
|
||||||
|
- **Note**: \( W_c \) is generally **not unique**.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### Center Manifold Theorem
|
||||||
|
Let:
|
||||||
|
- \( f \in C^1(E) \), \( r \leq 1 \), where \( E \) is an open subspace of \( \mathbb{R}^n \).
|
||||||
|
- \( f(0) = 0 \), and \( J \) (the Jacobian) has:
|
||||||
|
- \( n_s \) eigenvalues with a negative real part.
|
||||||
|
- \( n_u \) eigenvalues with a positive real part.
|
||||||
|
- \( n_c = n - n_s - n_u \) purely imaginary eigenvalues.
|
||||||
|
|
||||||
|
Then there exists an \( n_c \)-dimensional **Center Manifold** \( W_c \) of class \( C^r \), which is tangent to \( E_c \).
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
**Note**: Refer to class slides for detailed examples.
|
||||||
Loading…
x
Reference in New Issue
Block a user