vault backup: 2024-09-04 14:48:34
This commit is contained in:
parent
b55061cea6
commit
dd3338f6f2
4
.obsidian/plugins/colored-tags/data.json
vendored
4
.obsidian/plugins/colored-tags/data.json
vendored
@ -116,7 +116,9 @@
|
||||
"Survey": 104,
|
||||
"Seminar": 105,
|
||||
"Obsidian": 106,
|
||||
"Obsidian1": 107
|
||||
"Obsidian1": 107,
|
||||
"Diffusion": 108,
|
||||
"Turbulence": 109
|
||||
},
|
||||
"_version": 3
|
||||
}
|
||||
3
.obsidian/types.json
vendored
3
.obsidian/types.json
vendored
@ -11,6 +11,7 @@
|
||||
"Project": "multitext",
|
||||
"status": "checkbox",
|
||||
"dateread": "date",
|
||||
"creation_date": "date"
|
||||
"creation_date": "date",
|
||||
"authors": "multitext"
|
||||
}
|
||||
}
|
||||
73
.obsidian/workspace.json
vendored
73
.obsidian/workspace.json
vendored
@ -4,61 +4,28 @@
|
||||
"type": "split",
|
||||
"children": [
|
||||
{
|
||||
"id": "f2710f80feb0fcd8",
|
||||
"id": "3a1d09a7117f754c",
|
||||
"type": "tabs",
|
||||
"dimension": 32.59911894273127,
|
||||
"dimension": 38.2202304737516,
|
||||
"children": [
|
||||
{
|
||||
"id": "f2f0bf554b1c0989",
|
||||
"id": "c424ac94667c0e1c",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "300s School/302. NUCE 2100 - Fundamentals of Nuclear Engineering/2024-08-27 Introduction.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "a513688fb659482a",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "3-99 Research/6. Researching Techniques/Learning How to Use Github.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "8bf53bf6649cb555",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "full-calendar-view",
|
||||
"state": {}
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "4f3f806fef2c3a30",
|
||||
"type": "leaf",
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "200. Library Papers/bullockHardwareloopSimulation2004.md",
|
||||
"file": "200. Library Papers/liSyntheticLagrangianTurbulence2024.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"currentTab": 3
|
||||
]
|
||||
},
|
||||
{
|
||||
"id": "3a1d09a7117f754c",
|
||||
"id": "062bcaf163531cb3",
|
||||
"type": "tabs",
|
||||
"dimension": 34.06754772393539,
|
||||
"dimension": 29.769526248399487,
|
||||
"children": [
|
||||
{
|
||||
"id": "f496283b2107cb82",
|
||||
@ -77,7 +44,7 @@
|
||||
{
|
||||
"id": "faee731ed5195087",
|
||||
"type": "tabs",
|
||||
"dimension": 33.33333333333333,
|
||||
"dimension": 32.01024327784891,
|
||||
"children": [
|
||||
{
|
||||
"id": "c7a205391cf59799",
|
||||
@ -173,7 +140,7 @@
|
||||
"state": {
|
||||
"type": "backlink",
|
||||
"state": {
|
||||
"file": "1000s Templates/Literature Note.md",
|
||||
"file": "200. Library Papers/liSyntheticLagrangianTurbulence2024.md",
|
||||
"collapseAll": true,
|
||||
"extraContext": false,
|
||||
"sortOrder": "alphabetical",
|
||||
@ -190,7 +157,7 @@
|
||||
"state": {
|
||||
"type": "outgoing-link",
|
||||
"state": {
|
||||
"file": "1000s Templates/Literature Note.md",
|
||||
"file": "200. Library Papers/liSyntheticLagrangianTurbulence2024.md",
|
||||
"linksCollapsed": false,
|
||||
"unlinkedCollapsed": true
|
||||
}
|
||||
@ -213,7 +180,7 @@
|
||||
"state": {
|
||||
"type": "outline",
|
||||
"state": {
|
||||
"file": "1000s Templates/Literature Note.md"
|
||||
"file": "200. Library Papers/liSyntheticLagrangianTurbulence2024.md"
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -252,10 +219,17 @@
|
||||
"obsidian-full-calendar:Open Full Calendar": false
|
||||
}
|
||||
},
|
||||
"active": "f496283b2107cb82",
|
||||
"active": "c424ac94667c0e1c",
|
||||
"lastOpenFiles": [
|
||||
"200. Library Papers/bullockHardwareloopSimulation2004.md",
|
||||
"1000s Templates/Literature Note.md",
|
||||
"200. Library Papers/liSyntheticLagrangianTurbulence2024.md",
|
||||
"\"[Full.md",
|
||||
"300s School/302. NUCE 2100 - Fundamentals of Nuclear Engineering/2024-08-27 Introduction.md",
|
||||
"[Full.md",
|
||||
"3-99 Research/6. Researching Techniques/Learning How to Use Github.md",
|
||||
"{uri}.md",
|
||||
"200. Library Papers/bullockHardwareloopSimulation2004.md",
|
||||
"200. Library Papers/Kry10TechnicalOverview.md",
|
||||
"300s School/302. NUCE 2100 - Fundamentals of Nuclear Engineering/2024-09-03 Homework 1.md",
|
||||
"200. Library Papers/bullockHardwareintheloopSimulation2004.md",
|
||||
"200. Library Papers/My Library.bib",
|
||||
@ -274,13 +248,6 @@
|
||||
"200. Library Papers/fernandezadiegoApplyingModelChecking2015.md",
|
||||
"200. Library Papers/chenFullscopeHighfidelitySimulatorbased2024.md",
|
||||
"200. Library Papers/CyberAttackGerman2015.md",
|
||||
"200. Library Papers/IntroductionDiffusionModels2022.md",
|
||||
"200. Library Papers/mihalicHardwareintheLoopSimulationsHistorical2022.md",
|
||||
"200. Library Papers/nguyenFuzzyControlSystems2019.md",
|
||||
"3-99 Research/6. Researching Techniques/Pandoc and Going from Markdown to LaTeX.md",
|
||||
"101. Current Writing/ARCADE Implementation at the University of Pittsburgh.md",
|
||||
"100. Managerial Pages/2. (SR-CIST) Workshop on Security and Resiliency of Critical Infrastructure and Space Technologies.md",
|
||||
"4. Qualifying Exam/2. Writing/Untitled.md",
|
||||
"4. Qualifying Exam/2. Writing/Untitled.bib",
|
||||
"4. Qualifying Exam/2. Writing/test.bib",
|
||||
"201. Metadata/My Library/files/4011/contextual.css",
|
||||
|
||||
@ -11,7 +11,7 @@ authors:
|
||||
{% endfor %}
|
||||
citekey: "{{ citekey }}"
|
||||
{% if itemType == "journalArticle" %}
|
||||
journal: "_{{ publicationTitle }}_"
|
||||
journal: "{{ publicationTitle }}"
|
||||
{% endif %}
|
||||
{% if volume %}
|
||||
volume: {{ volume }}
|
||||
@ -51,9 +51,6 @@ pages: {{ pages }}
|
||||
| replace(']', '')
|
||||
}}{% if not loop.last %}, {% endif %}{% endfor %}
|
||||
|
||||
## Zotero Link
|
||||
[Attachment]
|
||||
|
||||
>[!Abstract]
|
||||
>{% if abstractNote %}{{abstractNote}}{% endif %}
|
||||
|
||||
@ -63,14 +60,14 @@ pages: {{ pages }}
|
||||
|
||||
# Annotations
|
||||
{% macro calloutHeader(type, color) -%}
|
||||
{%- if type == "highlight" -%}
|
||||
{% if type == "highlight" %}
|
||||
<mark style="background-color: {{color}}">Quote</mark>
|
||||
{%- endif -%}
|
||||
{% endif %}
|
||||
|
||||
{%- if type == "text" -%}
|
||||
{% if type == "text" %}
|
||||
Note
|
||||
{%- endif -%}
|
||||
{%- endmacro -%}
|
||||
{% endif %}
|
||||
{% endmacro %}
|
||||
|
||||
{% persist "annotations" %}
|
||||
{% set newAnnotations = annotations | filterby("date", "dateafter", lastImportDate) %}
|
||||
|
||||
@ -6772,6 +6772,7 @@ for defect classification of TFT–LCD panels.pdf}
|
||||
urldate = {2024-05-20},
|
||||
abstract = {Abstract Lagrangian turbulence lies at the core of numerous applied and fundamental problems related to the physics of dispersion and mixing in engineering, biofluids, the atmosphere, oceans and astrophysics. Despite exceptional theoretical, numerical and experimental efforts conducted over the past 30 years, no existing models are capable of faithfully reproducing statistical and topological properties exhibited by particle trajectories in turbulence. We propose a machine learning approach, based on a state-of-the-art diffusion model, to generate single-particle trajectories in three-dimensional turbulence at high Reynolds numbers, thereby bypassing the need for direct numerical simulations or experiments to obtain reliable Lagrangian data. Our model demonstrates the ability to reproduce most statistical benchmarks across time scales, including the fat-tail distribution for velocity increments, the anomalous power law and the increased intermittency around the dissipative scale. Slight deviations are observed below the dissipative scale, particularly in the acceleration and flatness statistics. Surprisingly, the model exhibits strong generalizability for extreme events, producing events of higher intensity and rarity that still match the realistic statistics. This paves the way for producing synthetic high-quality datasets for pretraining various downstream applications of Lagrangian turbulence.},
|
||||
langid = {english},
|
||||
keywords = {Diffusion,Turbulence},
|
||||
file = {/home/danesabo/Zotero/storage/A6FPHV6L/Li et al. - 2024 - Synthetic Lagrangian turbulence by generative diff.pdf}
|
||||
}
|
||||
|
||||
|
||||
61
200. Library Papers/liSyntheticLagrangianTurbulence2024.md
Normal file
61
200. Library Papers/liSyntheticLagrangianTurbulence2024.md
Normal file
@ -0,0 +1,61 @@
|
||||
---
|
||||
readstatus: false
|
||||
dateread:
|
||||
title: "Synthetic Lagrangian turbulence by generative diffusion models"
|
||||
year: 2024
|
||||
authors:
|
||||
|
||||
|
||||
- "Li, T."
|
||||
|
||||
- "Biferale, L."
|
||||
|
||||
- "Bonaccorso, F."
|
||||
|
||||
- "Scarpolini, M. A."
|
||||
|
||||
- "Buzzicotti, M."
|
||||
|
||||
|
||||
citekey: "liSyntheticLagrangianTurbulence2024"
|
||||
|
||||
journal: "Nature Machine Intelligence"
|
||||
|
||||
|
||||
volume: 6
|
||||
|
||||
|
||||
issue: 4
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
pages: 393-403
|
||||
|
||||
---
|
||||
# Indexing Information
|
||||
## DOI
|
||||
[10.1038/s42256-024-00810-0](https://doi.org/10.1038/s42256-024-00810-0)
|
||||
## ISBN
|
||||
[](https://www.isbnsearch.org/isbn/)
|
||||
## Tags:
|
||||
#Diffusion, #Turbulence
|
||||
|
||||
>[!Abstract]
|
||||
>Abstract
|
||||
Lagrangian turbulence lies at the core of numerous applied and fundamental problems related to the physics of dispersion and mixing in engineering, biofluids, the atmosphere, oceans and astrophysics. Despite exceptional theoretical, numerical and experimental efforts conducted over the past 30 years, no existing models are capable of faithfully reproducing statistical and topological properties exhibited by particle trajectories in turbulence. We propose a machine learning approach, based on a state-of-the-art diffusion model, to generate single-particle trajectories in three-dimensional turbulence at high Reynolds numbers, thereby bypassing the need for direct numerical simulations or experiments to obtain reliable Lagrangian data. Our model demonstrates the ability to reproduce most statistical benchmarks across time scales, including the fat-tail distribution for velocity increments, the anomalous power law and the increased intermittency around the dissipative scale. Slight deviations are observed below the dissipative scale, particularly in the acceleration and flatness statistics. Surprisingly, the model exhibits strong generalizability for extreme events, producing events of higher intensity and rarity that still match the realistic statistics. This paves the way for producing synthetic high-quality datasets for pretraining various downstream applications of Lagrangian turbulence.
|
||||
|
||||
>[!note] Markdown Notes
|
||||
>None!
|
||||
|
||||
|
||||
# Annotations
|
||||
|
||||
|
||||
%% begin annotations %%
|
||||
|
||||
|
||||
%% end annotations %%
|
||||
|
||||
%% Import Date: 2024-09-04T14:46:34.638-04:00 %%
|
||||
@ -6772,6 +6772,7 @@ for defect classification of TFT–LCD panels.pdf}
|
||||
urldate = {2024-05-20},
|
||||
abstract = {Abstract Lagrangian turbulence lies at the core of numerous applied and fundamental problems related to the physics of dispersion and mixing in engineering, biofluids, the atmosphere, oceans and astrophysics. Despite exceptional theoretical, numerical and experimental efforts conducted over the past 30 years, no existing models are capable of faithfully reproducing statistical and topological properties exhibited by particle trajectories in turbulence. We propose a machine learning approach, based on a state-of-the-art diffusion model, to generate single-particle trajectories in three-dimensional turbulence at high Reynolds numbers, thereby bypassing the need for direct numerical simulations or experiments to obtain reliable Lagrangian data. Our model demonstrates the ability to reproduce most statistical benchmarks across time scales, including the fat-tail distribution for velocity increments, the anomalous power law and the increased intermittency around the dissipative scale. Slight deviations are observed below the dissipative scale, particularly in the acceleration and flatness statistics. Surprisingly, the model exhibits strong generalizability for extreme events, producing events of higher intensity and rarity that still match the realistic statistics. This paves the way for producing synthetic high-quality datasets for pretraining various downstream applications of Lagrangian turbulence.},
|
||||
langid = {english},
|
||||
keywords = {Diffusion,Turbulence},
|
||||
file = {/home/danesabo/Zotero/storage/A6FPHV6L/Li et al. - 2024 - Synthetic Lagrangian turbulence by generative diff.pdf}
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user