From ba611f56e7d4b05e225187089dbe597a05745e15 Mon Sep 17 00:00:00 2001 From: Dane Sabo Date: Thu, 9 Jan 2025 18:10:27 -0500 Subject: [PATCH] vault backup: 2025-01-09 18:10:27 --- .obsidian/plugins/colored-tags/data.json | 3 +- 2025-01-09 Sampling Theory.md | 46 +++++++++++++++++++++++- 2 files changed, 47 insertions(+), 2 deletions(-) diff --git a/.obsidian/plugins/colored-tags/data.json b/.obsidian/plugins/colored-tags/data.json index 22815770e..ff7a1fd4f 100755 --- a/.obsidian/plugins/colored-tags/data.json +++ b/.obsidian/plugins/colored-tags/data.json @@ -158,7 +158,8 @@ "Unstructured-multiplicative-uncertainty": 146, "NPIC2025": 147, "Thesis": 148, - "Organization": 149 + "Organization": 149, + "Frequency": 150 }, "_version": 3 } \ No newline at end of file diff --git a/2025-01-09 Sampling Theory.md b/2025-01-09 Sampling Theory.md index 2e65efe2a..f65bc52d7 100644 --- a/2025-01-09 Sampling Theory.md +++ b/2025-01-09 Sampling Theory.md @@ -1 +1,45 @@ -a \ No newline at end of file +# Impulse Sampling +How do we represent a sequence of numbers? +Impulse sampling does it by +1. having a continuous signal +2. having an impulse train (impulses at sampling frequency) +3. multiply em together + +>[!info] Functionals +>Laurent Schwartz (1950): +>$$\int_{-\infty}^\infty \phi(x) f(x) dx = z$$ +>Shift Property: +>$$\int_{-\infty}^\infty \phi(t-\tau) f(t) dx = FINISH$$ +>Laplace Transform + +**Pulse Train $\delta_t(t)$** +$$\delta_T(t) = \sum_{k=-\infty}^\infty \delta(t-kT)$$ +$$x^*(t) = x(t)\delta_T(t) = \sum_{k=-\infty}^\infty x(t)\delta(t-kT)$$ +Where the sampled signal is $x^*$ +What about in Laplace domain? +$$X^*(t) = \int \left[ \sum_{k=-\infty}^\infty x(t)\delta(t-kT)\right] e^{-st} dt$$ +$$X^*(t) =\sum_{k=-\infty}^\infty \left[\int x(t)\delta(t-kT) e^{-st} \right] dt$$ +$$X^*(t) =\sum_{k=-\infty}^\infty \left[\int x(t)e^{-st} \delta(t-kT) \right] dt$$ +Now using the shift property... +$$X^*(t) =\sum_{k=-\infty}^\infty x(kT)e^{-kTs} $$ +## Some Observations +If we change the variable $z = e^{Ts}$ +>[!important] **The Z-Transform** +> $$X^*(t) = X(z) = \sum_{k=-\infty}^\infty x(kT) z^{-k} $$ +> Z transform can be viewed as short hand of the Laplace transform +> +> Sampling is a time varying process. If x(t) is time shifted by a small amount, the sampled signal x(kT) will be different. + +# Frequency Domain Interpretation +$\delta_T(t)$ is periodic, so we can turn it into a Fourier series... +$$\delta_T(t) = \sum_{N=-\infty}^N C_N e^{j(\frac{2\pi}{T})Nt}$$ +$$C_n = \frac{1}{T}\int_{-T/2}^{T/2} \delta_T(t) e^{-j(\frac{2\pi}{T})Nt} dt$$ +Apply a shift and do some stuff... + +$$C_n = \frac{1}{T} \int_{-T/2}^{T/2} e^{-j \frac{2\pi}{T} Nt} dt $$ +$$C_n = \frac{1}{T}$$ +So then... + +$$\delta_T(t) = \frac{1}{T} \sum_{N=-\infty}^N e^{j(\frac{2\pi}{T})Nt}$$ +$$\delta_T(t) = \frac{1}{T} \sum_{N=-\infty}^N e^{j \omega_s T Nt} $$ +Then, this can be used to get all the way to $X(z)$. \ No newline at end of file