vault backup: 2024-09-23 13:07:55
This commit is contained in:
parent
b9826f8bf3
commit
afb74b9c73
@ -6,3 +6,47 @@ endTime: 14:30
|
|||||||
date: 2024-09-23
|
date: 2024-09-23
|
||||||
completed: null
|
completed: null
|
||||||
---
|
---
|
||||||
|
# Motivation for Nonlinear Dynamics
|
||||||
|
1. Started with an example of a simple spring-mass. This is a linear system by default
|
||||||
|
2. Then we talked about an undamped pendulum. Linear for only small angle assumption...
|
||||||
|
EOM:
|
||||||
|
$$ \ddot{\theta} = -\frac{g}{l} \sin(\theta) $$
|
||||||
|
Small angle assumption makes this just like $$\ddot x+ \omega^2 x = 0$$
|
||||||
|
To look at stability, we could look at the poles. But for us we're going to do things in the time domain and look at first order systems.
|
||||||
|
$$ \left[ \matrix{ \ddot x \\ \dot x} \right] =
|
||||||
|
\left[ \matrix{ 0 & -\omega^2 \\ 1 & 0 } \right]
|
||||||
|
\left[ \matrix{ \dot x \\ x } \right] $$
|
||||||
|
Recall from last time:
|
||||||
|
- $\Delta = \det(A)$
|
||||||
|
- $\tau = \text{tr}(A)$
|
||||||
|
When we look at these for this matrix, we see we should have a center.
|
||||||
|
Our general solution should be:
|
||||||
|
$x(t) = A \sin(\omega t + \phi)$
|
||||||
|
$y(t) = \dot x(t) = A \cos(\omega t + \phi)$
|
||||||
|
Recall the trig identity $\sin(x)^2 + \cos(x)^2 = 1$
|
||||||
|
Then:
|
||||||
|
$$x^2 + \frac{y^2}{\omega^2} = A^2$$
|
||||||
|
and for the $\omega = \sqrt{\frac{k}{m}}$ case
|
||||||
|
|
||||||
|
$$\frac{k}{2} x^2 + \frac{m}{2} \dot x^2 = \frac{k A^2}{2}$$
|
||||||
|
This is recognizably the sum of energy for a system!
|
||||||
|
## Damped Oscillation (Linear)
|
||||||
|
$$ m \ddot x + c \dot x + k x = 0 $$
|
||||||
|
$$ \ddot x + \beta \dot x + \omega^2 x = 0, \beta>0, \omega>0 $$
|
||||||
|
Where $\dot x = y$ and $\dot y = -\beta y - \omega^2 x$
|
||||||
|
$$ \left[ \matrix{ \dot x \\ \dot y} \right] =
|
||||||
|
\left[ \matrix{ 0 & 1 \\ -\omega^2 & - \beta } \right]
|
||||||
|
\left[ \matrix{ y \\ x } \right] $$
|
||||||
|
Now we look at our parabola chart to see where we are:
|
||||||
|
$\tau^2 - 4 \Delta = \beta^2 - 4 \omega^2$
|
||||||
|
Stable Spiral (Underdamped)
|
||||||
|
- $z < 0 \rightarrow \tau^2 - 4 \Delta<0 \rightarrow \tau^2 < 4 \Delta$$
|
||||||
|
Degenerate Node (Stable) ((Critically Damped))
|
||||||
|
- $z = 0 \rightarrow \tau^2 = 4 \Delta$$
|
||||||
|
Stable Node (Overdamped)
|
||||||
|
- $z > 0 \rightarrow \tau^2 - 4 \Delta>0 \rightarrow \tau^2 > 4 \Delta$$
|
||||||
|
|
||||||
|
These things relate directly to the eigenvectors and eigenvectors of the system.
|
||||||
|
## Eigenvalues and Eigenvectors
|
||||||
|
$z = \beta^2 - 4 \omega^2$
|
||||||
|
Solving for lambda ($\det[A - I\lambda]$) will lead us towards the same expression for z. This is what's under the square root.
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user