vault backup: 2024-09-30 13:30:32
This commit is contained in:
parent
fd7430afea
commit
8bd60e4b2b
@ -39,3 +39,21 @@ $\nabla \cdot (\zeta f) = e^{-2 x}$
|
||||
Now a special note: These functions can define where limit cycles can't be. If the function doesn't change sign for a subset of R, there can't be a limit cycle contained in that subset. There CAN be a limit cycle that crosses the point the function changes sign.
|
||||
### Lyapunov Function
|
||||
Aleksander Lyapunov (Liapunov)
|
||||
$V(\vec x) = V(x,y) \leftarrow$ a scalar function
|
||||
$V(\vec x) > 0 \forall \vec x\neq \vec x^*$
|
||||
$V(\vec x^*) = 0$
|
||||
$\dot V = \frac{dV}{dt} <0$
|
||||
$V(\vec x)$ is a positive definite function.
|
||||
Then the system is stable ISL (in the sense of Lyapunov).
|
||||
The system will always asymptotically approach the equilibrium point.
|
||||
$\frac{dV}{dt} = \frac{dV}{dx} \frac{dx}{dt} + \frac{dV}{dy} \frac {dy}{dt} = \dot x \frac{dV}{dx} + \dot y \frac{dV}{dy}$
|
||||
|
||||
Example:
|
||||
$\dot x = y - x^3$
|
||||
$\dot y = -x-y^3$
|
||||
$V(x,y) = c_1 x^2 + c_2 y^2$
|
||||
$\frac{dV}{dt} = 2 c_1 x \dot x + 2 c_2 y \dot y$
|
||||
$= 2 c_1 x(y-x^3) + 2c_2 y(-x-y^3)$
|
||||
Assume $c_1 = c_2$
|
||||
... $\therefore \frac{dV}{dt} = -2c(x^4+y^4) < 0$
|
||||
Therefore limit cycles are not possible.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user