vault backup: 2024-09-09 14:29:31
This commit is contained in:
parent
ebe53a2ecf
commit
8833a5c5af
14
.obsidian/workspace.json
vendored
14
.obsidian/workspace.json
vendored
@ -23,9 +23,11 @@
|
|||||||
"id": "e7019452a0bd61a5",
|
"id": "e7019452a0bd61a5",
|
||||||
"type": "leaf",
|
"type": "leaf",
|
||||||
"state": {
|
"state": {
|
||||||
"type": "image",
|
"type": "markdown",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex3.png"
|
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md",
|
||||||
|
"mode": "source",
|
||||||
|
"source": false
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -97,7 +99,7 @@
|
|||||||
"state": {
|
"state": {
|
||||||
"type": "backlink",
|
"type": "backlink",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex3.png",
|
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md",
|
||||||
"collapseAll": true,
|
"collapseAll": true,
|
||||||
"extraContext": false,
|
"extraContext": false,
|
||||||
"sortOrder": "alphabetical",
|
"sortOrder": "alphabetical",
|
||||||
@ -114,7 +116,7 @@
|
|||||||
"state": {
|
"state": {
|
||||||
"type": "outgoing-link",
|
"type": "outgoing-link",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex3.png",
|
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md",
|
||||||
"linksCollapsed": false,
|
"linksCollapsed": false,
|
||||||
"unlinkedCollapsed": true
|
"unlinkedCollapsed": true
|
||||||
}
|
}
|
||||||
@ -137,7 +139,7 @@
|
|||||||
"state": {
|
"state": {
|
||||||
"type": "outline",
|
"type": "outline",
|
||||||
"state": {
|
"state": {
|
||||||
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex3.png"
|
"file": "300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -177,9 +179,9 @@
|
|||||||
},
|
},
|
||||||
"active": "e7019452a0bd61a5",
|
"active": "e7019452a0bd61a5",
|
||||||
"lastOpenFiles": [
|
"lastOpenFiles": [
|
||||||
|
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex3.png",
|
||||||
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex2.png",
|
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex2.png",
|
||||||
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Example.py~",
|
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Example.py~",
|
||||||
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex3.png",
|
|
||||||
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex1.png",
|
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09/ex1.png",
|
||||||
"3-99 Research/6. Researching Techniques/Setting up a virtual python environment (venv).md",
|
"3-99 Research/6. Researching Techniques/Setting up a virtual python environment (venv).md",
|
||||||
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09",
|
"300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09",
|
||||||
|
|||||||
@ -48,7 +48,7 @@ How is this useful to us engineers?
|
|||||||
We are going to see systems that are nonlinear, and they can give us ideas about where things could blow up. In our second example, we have generally a pretty safe area below x = 2. Anywhere below there, we know we're going to end up at x = -2, but above x =2, all hell breaks loose.
|
We are going to see systems that are nonlinear, and they can give us ideas about where things could blow up. In our second example, we have generally a pretty safe area below x = 2. Anywhere below there, we know we're going to end up at x = -2, but above x =2, all hell breaks loose.
|
||||||
|
|
||||||
This is what we care about. We want to know where in our nonlinear system domains things can become dangerous.
|
This is what we care about. We want to know where in our nonlinear system domains things can become dangerous.
|
||||||
## How do we numerically get a time domain response?
|
# How do we numerically get a time domain response?
|
||||||
Numericaly:
|
Numericaly:
|
||||||
$$ \dot x = f(x) $$
|
$$ \dot x = f(x) $$
|
||||||
$$\frac{dx}{dt} = \lim_{\Delta t \rightarrow 0} \frac{f(x(t+\Delta t))-f(x(x))}{\Delta t} $$
|
$$\frac{dx}{dt} = \lim_{\Delta t \rightarrow 0} \frac{f(x(t+\Delta t))-f(x(x))}{\Delta t} $$
|
||||||
@ -60,4 +60,31 @@ This is the tangent (or the secant while $\Delta t =/ 0$)
|
|||||||
> There are better methods!
|
> There are better methods!
|
||||||
> ode45() <- Variable Step Runge-Kutta
|
> ode45() <- Variable Step Runge-Kutta
|
||||||
|
|
||||||
We're going to use a lot of odeint in SciPy
|
We're going to use a lot of odeint in SciPy
|
||||||
|
*Insert code here*.
|
||||||
|
|
||||||
|
# Geometric Analyses in Higher Dimensions
|
||||||
|
We want to do geometric analysis with n-dimensions, not just one.
|
||||||
|
## Linear stability for a nonlinear system
|
||||||
|
1. Find the fixed equilibrium points
|
||||||
|
$$\dot x = 0 = f(x)$$
|
||||||
|
This equation is solved by points $x^\star$
|
||||||
|
Define: $$ \epsilon(t) = x(t) - x^\star \rightarrow x(t) = x^\star + \epsilon(t)$$
|
||||||
|
$$\frac{dx}{dt} = f(x)$$
|
||||||
|
$$\frac{d\epsilon}{dt} = f(x^\star +\epsilon)$$
|
||||||
|
$$= f(x^\star) + \epsilon f'(x^\star) + \Theta(\epsilon^2)\rightarrow \epsilon f'(x^\star) + \Theta(\epsilon^2)$$
|
||||||
|
$$\frac{d\epsilon}{dt} = \epsilon f'(x^\star) + \Theta(\epsilon^2) \rightarrow \epsilon f'(x^\star)$$
|
||||||
|
- If $\epsilon f'(x^\star) > 0 \rightarrow \text{Unstable}$
|
||||||
|
- If $\epsilon f'(x^\star) < 0 \rightarrow \text{Stable}$
|
||||||
|
- If $\epsilon f'(x^\star) = 0 \rightarrow \text{Inconclusive}$
|
||||||
|
## Energy Motivation
|
||||||
|
$$\dot{x} = f(x) = -\frac{dV}{dt} \text{V = potential}$$
|
||||||
|
$$\frac{dV}{dx} = -\frac{dx}{dt}$$
|
||||||
|
$$\frac{dV}{dt} <0 \rightarrow V \text{continuously decreasing in time until } \frac{dV}{dt} = 0$$
|
||||||
|
- Stable fixed poitn: $V(x^\star)$ is (a local) minimum of $V(x)$
|
||||||
|
- Unstable fixed point: $V(x^\star)$ is (a local) maximum of $V(x)$.
|
||||||
|
# A review of Linear Differential Equations
|
||||||
|
$$\dot x = \frac{dx}{dt} = A x + F$$
|
||||||
|
Homogeneous (no input/forcing):
|
||||||
|
$$\dot x = A x$$
|
||||||
|
$$x(t) = C e^{At}$$
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user