vault backup: 2024-09-23 13:26:12

This commit is contained in:
Dane Sabo 2024-09-23 13:26:13 -04:00
parent afb74b9c73
commit 8591c8375e

View File

@ -50,3 +50,23 @@ These things relate directly to the eigenvectors and eigenvectors of the system.
## Eigenvalues and Eigenvectors
$z = \beta^2 - 4 \omega^2$
Solving for lambda ($\det[A - I\lambda]$) will lead us towards the same expression for z. This is what's under the square root.
# Nonlinear Things (Finally!)
## Nonlinear Pendulum
### Undamped
$$ \ddot{\theta} = -\frac{g}{l} \sin(\theta) $$
$\dot \theta = \zeta = P(\theta, \zeta)$
$$ {\bf J} =
\left[ \matrix{ \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial \zeta} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial \zeta}} \right] =
\left[ \matrix{ 0 & 1\\ -\omega^2 \sin(\theta) & 0 } \right]
$$
What ar the equilibrium points?
$$\left[ \matrix{ \dot \theta \\ \dot \zeta} \right ] = \left[ \matrix{ \zeta \\ -\omega^2 \sin(\theta) } \right] $$
This system is in equilibrium when $\dot \theta = \dot \zeta = 0$, which is when $\zeta = \sin(\theta) = 0$ .
For $\bf J$:
- $\tau = 0$
- $\Delta = \omega^2 \cos(\theta)$
Then:
- $\theta$ is 0, $\Delta = \omega^2 >0$, center, marginally stable
- $\theta = n \pi$, $\Delta = - \omega^2 <0$, saddle. Unstable
What does the phase plane look like?