vault backup: 2024-10-30 15:21:21

This commit is contained in:
Dane Sabo 2024-10-30 15:21:21 -04:00
parent 42c8ed0c22
commit 75c96d252b

View File

@ -43,4 +43,4 @@ Something to justify, why diffusion model as opposed to other generative AI
## Writin some stuff ## Writin some stuff
The purpose of this proposal is to suggest that using a generative network to create unstructured perturbations can be a viable way to advance the state of the art. But to do this, the current state of diffusion models and their place must be introduced. The generative diffusion model is a recent breakthrough in generative models [@sohl-dicksteinDeepUnsupervisedLearning2015]. Diffusion generative models are the state of the art for image and video generation, and have demonstrated promise for audio generation and noise removal [@kongDiffWaveVersatileDiffusion2020] [@SoraCreatingVideo]. Diffusion models do this through a forward noise-inducing process, and a backwards The purpose of this proposal is to suggest that using a generative network to create unstructured perturbations can be a viable way to advance the state of the art. But to do this, the current state of diffusion models and their place must be introduced. The generative diffusion model is a recent breakthrough in generative models [@sohl-dicksteinDeepUnsupervisedLearning2015]. Diffusion generative models are the state of the art for image and video generation, and have demonstrated promise for audio generation and noise removal [@kongDiffWaveVersatileDiffusion2020] [@SoraCreatingVideo]. A diffusion generative model, AlphaFold 3, won the Nobel Prize in Chemistry [@AlphaFold3Predicts2024] Diffusion models do this through a forward noise-inducing process, and a learned backwards noise-removing process.