vault backup: 2024-09-23 13:49:33

This commit is contained in:
Dane Sabo 2024-09-23 13:49:33 -04:00
parent 2fc7a09518
commit 733b83f5e9

View File

@ -76,4 +76,16 @@ How do we know which way the saddle points will kick us? The eigenvalues. The ce
### Damped
What about when we have damping?
![[Pasted image 20240923133900.png]]
Now we have stable spirals!
Now we have stable spirals!
$$ {\bf J} =
\left[ \matrix{ \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial \zeta} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial \zeta}} \right] =
\left[ \matrix{ 0 & 1\\ -\omega^2 \sin(\theta) & -\beta } \right]
$$
What are the equilibrium points?
$$\left[ \matrix{ \dot \theta \\ \dot \zeta} \right ] = \left[ \matrix{ \zeta \\ -\beta\zeta-\omega^2 \sin(\theta) } \right] $$
For $\bf J$:
- $\tau = -\beta$
- $\Delta = \pm\omega^2$
Then:
- $\theta$ is 0, $\Delta = \omega^2 >0$, spiral. Stable
- $\theta = n \pi$, $\Delta = - \omega^2 <0$, saddle. Unstable