vault backup: 2024-09-23 13:49:33
This commit is contained in:
parent
2fc7a09518
commit
733b83f5e9
@ -76,4 +76,16 @@ How do we know which way the saddle points will kick us? The eigenvalues. The ce
|
||||
### Damped
|
||||
What about when we have damping?
|
||||
![[Pasted image 20240923133900.png]]
|
||||
Now we have stable spirals!
|
||||
Now we have stable spirals!
|
||||
$$ {\bf J} =
|
||||
\left[ \matrix{ \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial \zeta} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial \zeta}} \right] =
|
||||
\left[ \matrix{ 0 & 1\\ -\omega^2 \sin(\theta) & -\beta } \right]
|
||||
$$
|
||||
What are the equilibrium points?
|
||||
$$\left[ \matrix{ \dot \theta \\ \dot \zeta} \right ] = \left[ \matrix{ \zeta \\ -\beta\zeta-\omega^2 \sin(\theta) } \right] $$
|
||||
For $\bf J$:
|
||||
- $\tau = -\beta$
|
||||
- $\Delta = \pm\omega^2$
|
||||
Then:
|
||||
- $\theta$ is 0, $\Delta = \omega^2 >0$, spiral. Stable
|
||||
- $\theta = n \pi$, $\Delta = - \omega^2 <0$, saddle. Unstable
|
||||
Loading…
x
Reference in New Issue
Block a user