Auto sync: 2025-11-26 17:58:05 (3 files changed)
M Presentations/ERLM/actual-presentation-outline.md A Presentations/ERLM/bouncing_ball_hybrid.png A Presentations/ERLM/bouncing_ball_hybrid.py
This commit is contained in:
parent
a91fcf7b47
commit
66c3b9ca97
@ -125,6 +125,11 @@ by breaking down the problem into smaller steps**
|
|||||||
systems.
|
systems.
|
||||||
2. Instead, we're going to create a *chain of proof* that
|
2. Instead, we're going to create a *chain of proof* that
|
||||||
our system is high assurance
|
our system is high assurance
|
||||||
|
2.1. We're ACTUALLY going to start by explaining we'll use
|
||||||
|
hybrid control systems
|
||||||
|
What is a hybrid system? well it's a system with both
|
||||||
|
continuous dynamics and discrete dynamics. This is a system
|
||||||
|
that both flows and jumps!.
|
||||||
3. We'll start with the procedures. We'll take the natural
|
3. We'll start with the procedures. We'll take the natural
|
||||||
language and turn them into FRETish requirements
|
language and turn them into FRETish requirements
|
||||||
4. We can do realizability checks at this point
|
4. We can do realizability checks at this point
|
||||||
@ -153,27 +158,111 @@ techniques from formal methods.
|
|||||||
that the whole system satisfies requirements.*
|
that the whole system satisfies requirements.*
|
||||||
|
|
||||||
### Presentation Strategy
|
### Presentation Strategy
|
||||||
|
This isn't really going to be one slide. Instead, I'll
|
||||||
|
present an arrow from left to right about what the steps
|
||||||
|
are, and dive into each subpiece for a slide, then jump back
|
||||||
|
out to the original slide.
|
||||||
|
|
||||||
|
The arrow should be from current operational procedure to
|
||||||
|
autonomous hybrid control system. The steps should be
|
||||||
|
- requirement synthesis in FRET
|
||||||
|
- Reactive synthesis in STRIX or similar
|
||||||
|
- building individual control modes
|
||||||
|
- badda bing we're there.
|
||||||
|
|
||||||
## SLIDE 5: METRICS OF SUCCESS
|
## SLIDE 5: METRICS OF SUCCESS
|
||||||
|
|
||||||
### Message
|
### Message
|
||||||
|
**In order to evaluate the progress of this research, we
|
||||||
|
need to have a way to measure progress**
|
||||||
|
|
||||||
|
1. This work is trying to make a real impact on building
|
||||||
|
autonomous control systems in nuclear power. Because of
|
||||||
|
this, the relevancy to industry partners is what's most
|
||||||
|
critical.
|
||||||
|
|
||||||
|
*To measure success, we're going to use technology readiness
|
||||||
|
levels*
|
||||||
|
|
||||||
|
1. We're shooting for TRL 5.
|
||||||
|
2. TRL 3 is critical function and proof of concept. This is
|
||||||
|
individual components working in isolation. If we can
|
||||||
|
bumble through each of these steps in a hacky way, I'll call
|
||||||
|
that TRL 3. This isn't necesarily a flushed out control
|
||||||
|
system.
|
||||||
|
3. TRL 4 is Laboratory Testing of Integrated Components.
|
||||||
|
This is a bench top simulation of a complete hybrid
|
||||||
|
autonomous control system. This includes a start up and
|
||||||
|
shutdown procedure, and load following with checks for xenon
|
||||||
|
poisoning and an ability to handle component failures.
|
||||||
|
4. TRL 5 is Laboratory testing in Relevant Environment. This
|
||||||
|
is TRL 4, plus putting it on the Ovation control system
|
||||||
|
instead of a purely code (MATLAB / PYTHON) simulation.
|
||||||
|
|
||||||
### Presentation Strategy
|
### Presentation Strategy
|
||||||
|
|
||||||
|
Show a TRL timeline, With TRL 3, 4, 5 arrows. Insert
|
||||||
|
Pictures along each step talking about what is what
|
||||||
|
|
||||||
## SLIDE 6: RISKS AND CONTINGENCIES
|
## SLIDE 6: RISKS AND CONTINGENCIES
|
||||||
|
|
||||||
### Message
|
### Message
|
||||||
|
**Possible challenges will be identified early and have
|
||||||
|
planned mitigations**
|
||||||
|
|
||||||
|
1. Computational tractability
|
||||||
|
- It might be really hard to generate these automata and
|
||||||
|
do reacability
|
||||||
|
- Exponential scaling with specification complexity
|
||||||
|
- Early indicators are synthesis times >24 hours, very
|
||||||
|
large automata, etc.
|
||||||
|
- Contingency is we can reduce scope to just a startup
|
||||||
|
sequence
|
||||||
|
- We can exploit time / scale separation of reactor
|
||||||
|
dynamics too, and also use the high performance compute
|
||||||
|
at CRC
|
||||||
|
|
||||||
|
2. Boolean guard conditions may not map cleanly to
|
||||||
|
continuous guard conditions
|
||||||
|
- early indicator: Continuous modes can't be built ot
|
||||||
|
reach transition boundaries, and safety regions can't be
|
||||||
|
expressed as polytopes.
|
||||||
|
- contingency: Restrict to polytopic invariants where
|
||||||
|
certain states are conservatively ignored. Sucks and
|
||||||
|
requires manipulation but could get the job done.
|
||||||
|
|
||||||
|
3. Procedure Formalization is not within reach yet.
|
||||||
|
- early indicator is we have a really hard time forming
|
||||||
|
complete specifications in FRET from written
|
||||||
|
procedures or synthesizing automata
|
||||||
|
- contingency is we document the taxonomy and figure out
|
||||||
|
what's missing to get us there. What is missing from
|
||||||
|
the written procedures? This becomes a research
|
||||||
|
contribution.
|
||||||
|
|
||||||
### Presentation Strategy
|
### Presentation Strategy
|
||||||
|
|
||||||
|
Basically just top and bottom comparison of risk, and what
|
||||||
|
the contingencies are
|
||||||
|
|
||||||
|
|
||||||
## SLIDE 7: BROADER IMPACTS
|
## SLIDE 7: BROADER IMPACTS
|
||||||
|
|
||||||
### Message
|
### Message
|
||||||
|
**Automating nuclear reactor control is a
|
||||||
|
billion-dollar-a-year problem**
|
||||||
|
|
||||||
|
1. We need a lot of energy
|
||||||
|
2. The only clean baseload option is nuclear power
|
||||||
|
3. If we build advanced nuclear to meet this need, operating
|
||||||
|
costs are expensive
|
||||||
|
|
||||||
|
*But automating control can reduce operator burden, and
|
||||||
|
significantly reduce operating costs.*
|
||||||
|
|
||||||
### Presentation Strategy
|
### Presentation Strategy
|
||||||
|
Basically copy over the one slider I made from earlier for
|
||||||
|
the emerson CEO visit.
|
||||||
|
|
||||||
## SLIDE 8: MONEY SLIDE
|
## SLIDE 8: MONEY SLIDE
|
||||||
|
|
||||||
|
|||||||
BIN
Presentations/ERLM/bouncing_ball_hybrid.png
Normal file
BIN
Presentations/ERLM/bouncing_ball_hybrid.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 761 KiB |
363
Presentations/ERLM/bouncing_ball_hybrid.py
Normal file
363
Presentations/ERLM/bouncing_ball_hybrid.py
Normal file
@ -0,0 +1,363 @@
|
|||||||
|
"""
|
||||||
|
Hybrid Dynamical System: Bouncing Ball in 1-D
|
||||||
|
|
||||||
|
This model demonstrates a hybrid system with:
|
||||||
|
- Flow State 1: Free fall (when ball center of mass is above radius r)
|
||||||
|
- Flow State 2: Spring-mass-damper (when ball is in contact with ground)
|
||||||
|
- Discrete transitions between these states
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from scipy.integrate import solve_ivp
|
||||||
|
|
||||||
|
|
||||||
|
class HybridBouncingBall:
|
||||||
|
def __init__(self, m=0.1, r=0.1, g=9.81, k=5000.0, c=10.0):
|
||||||
|
"""
|
||||||
|
Parameters:
|
||||||
|
-----------
|
||||||
|
m : float
|
||||||
|
Mass of the ball (kg)
|
||||||
|
r : float
|
||||||
|
Radius of the ball (m)
|
||||||
|
g : float
|
||||||
|
Gravitational acceleration (m/s^2)
|
||||||
|
k : float
|
||||||
|
Spring constant when in contact with ground (N/m)
|
||||||
|
c : float
|
||||||
|
Damping coefficient when in contact with ground (N·s/m)
|
||||||
|
"""
|
||||||
|
self.m = m
|
||||||
|
self.r = r
|
||||||
|
self.g = g
|
||||||
|
self.k = k
|
||||||
|
self.c = c
|
||||||
|
|
||||||
|
# For tracking state transitions
|
||||||
|
self.state_history = []
|
||||||
|
self.transition_times = []
|
||||||
|
|
||||||
|
def free_fall_dynamics(self, t, y):
|
||||||
|
"""
|
||||||
|
Flow dynamics for free fall state.
|
||||||
|
State: y = [position, velocity]
|
||||||
|
"""
|
||||||
|
pos, vel = y
|
||||||
|
dpos = vel
|
||||||
|
dvel = -self.g
|
||||||
|
return [dpos, dvel]
|
||||||
|
|
||||||
|
def spring_damper_dynamics(self, t, y):
|
||||||
|
"""
|
||||||
|
Flow dynamics for spring-mass-damper state.
|
||||||
|
State: y = [position, velocity]
|
||||||
|
|
||||||
|
When ball is compressed against ground:
|
||||||
|
F = -k*(r - pos) - c*vel - m*g
|
||||||
|
"""
|
||||||
|
pos, vel = y
|
||||||
|
dpos = vel
|
||||||
|
# Spring force kicks in when position < r
|
||||||
|
# Compression is (r - pos)
|
||||||
|
compression = self.r - pos
|
||||||
|
spring_force = self.k * compression
|
||||||
|
damping_force = self.c * vel
|
||||||
|
|
||||||
|
dvel = (spring_force - damping_force - self.m * self.g) / self.m
|
||||||
|
return [dpos, dvel]
|
||||||
|
|
||||||
|
def event_contact_ground(self, t, y):
|
||||||
|
"""Event: Ball contacts ground (transition to spring-damper)"""
|
||||||
|
pos, vel = y
|
||||||
|
return pos - self.r
|
||||||
|
|
||||||
|
def event_leave_ground(self, t, y):
|
||||||
|
"""Event: Ball leaves ground (transition to free fall)"""
|
||||||
|
pos, vel = y
|
||||||
|
# Leave ground when position > r AND velocity > 0
|
||||||
|
if pos > self.r and vel > 0:
|
||||||
|
return 0
|
||||||
|
return 1
|
||||||
|
|
||||||
|
# Make events terminal to stop integration
|
||||||
|
event_contact_ground.terminal = True
|
||||||
|
event_leave_ground.terminal = True
|
||||||
|
|
||||||
|
def simulate(self, y0, t_span, max_transitions=20):
|
||||||
|
"""
|
||||||
|
Simulate the hybrid system.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
-----------
|
||||||
|
y0 : list
|
||||||
|
Initial state [position, velocity]
|
||||||
|
t_span : tuple
|
||||||
|
Time span (t_start, t_end)
|
||||||
|
max_transitions : int
|
||||||
|
Maximum number of state transitions to simulate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
--------
|
||||||
|
t_all : array
|
||||||
|
Time points
|
||||||
|
y_all : array
|
||||||
|
State trajectory
|
||||||
|
states : list
|
||||||
|
State labels ('free_fall' or 'spring_damper')
|
||||||
|
"""
|
||||||
|
t_all = []
|
||||||
|
y_all = []
|
||||||
|
states = []
|
||||||
|
|
||||||
|
current_state = "free_fall" if y0[0] > self.r else "spring_damper"
|
||||||
|
current_y = y0
|
||||||
|
current_t = t_span[0]
|
||||||
|
t_end = t_span[1]
|
||||||
|
|
||||||
|
transitions = 0
|
||||||
|
|
||||||
|
while current_t < t_end and transitions < max_transitions:
|
||||||
|
if current_state == "free_fall":
|
||||||
|
# Integrate free fall until contact with ground
|
||||||
|
sol = solve_ivp(
|
||||||
|
self.free_fall_dynamics,
|
||||||
|
[current_t, t_end],
|
||||||
|
current_y,
|
||||||
|
events=self.event_contact_ground,
|
||||||
|
dense_output=True,
|
||||||
|
max_step=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store results
|
||||||
|
t_all.append(sol.t)
|
||||||
|
y_all.append(sol.y.T)
|
||||||
|
states.extend(["free_fall"] * len(sol.t))
|
||||||
|
|
||||||
|
# Check if event occurred
|
||||||
|
if sol.t_events[0].size > 0:
|
||||||
|
# Transition to spring-damper
|
||||||
|
current_state = "spring_damper"
|
||||||
|
current_t = sol.t[-1]
|
||||||
|
current_y = sol.y[:, -1]
|
||||||
|
self.transition_times.append(current_t)
|
||||||
|
transitions += 1
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
else: # spring_damper
|
||||||
|
# Integrate spring-damper until leaving ground
|
||||||
|
sol = solve_ivp(
|
||||||
|
self.spring_damper_dynamics,
|
||||||
|
[current_t, t_end],
|
||||||
|
current_y,
|
||||||
|
events=self.event_leave_ground,
|
||||||
|
dense_output=True,
|
||||||
|
max_step=0.01,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store results
|
||||||
|
t_all.append(sol.t)
|
||||||
|
y_all.append(sol.y.T)
|
||||||
|
states.extend(["spring_damper"] * len(sol.t))
|
||||||
|
|
||||||
|
# Check if event occurred
|
||||||
|
if sol.t_events[0].size > 0:
|
||||||
|
# Transition to free fall
|
||||||
|
current_state = "free_fall"
|
||||||
|
current_t = sol.t[-1]
|
||||||
|
current_y = sol.y[:, -1]
|
||||||
|
self.transition_times.append(current_t)
|
||||||
|
transitions += 1
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Concatenate all results
|
||||||
|
t_all = np.concatenate(t_all)
|
||||||
|
y_all = np.vstack(y_all)
|
||||||
|
|
||||||
|
return t_all, y_all, states
|
||||||
|
|
||||||
|
|
||||||
|
def plot_simulation(t, y, states, ball, show_phase=True):
|
||||||
|
"""
|
||||||
|
Plot the simulation results.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
-----------
|
||||||
|
t : array
|
||||||
|
Time points
|
||||||
|
y : array
|
||||||
|
State trajectory
|
||||||
|
states : list
|
||||||
|
State labels
|
||||||
|
ball : HybridBouncingBall
|
||||||
|
Ball object
|
||||||
|
show_phase : bool
|
||||||
|
Whether to show phase portrait
|
||||||
|
"""
|
||||||
|
# Convert states to numeric for coloring
|
||||||
|
state_numeric = np.array([1 if s == "free_fall" else 2 for s in states])
|
||||||
|
|
||||||
|
if show_phase:
|
||||||
|
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
|
||||||
|
else:
|
||||||
|
fig, axes = plt.subplots(2, 1, figsize=(12, 8))
|
||||||
|
axes = axes.reshape(-1, 1)
|
||||||
|
|
||||||
|
# Plot 1: Position vs Time
|
||||||
|
ax1 = axes[0, 0] if show_phase else axes[0]
|
||||||
|
scatter = ax1.scatter(t, y[:, 0], c=state_numeric, s=1, cmap="coolwarm", alpha=0.6)
|
||||||
|
ax1.axhline(
|
||||||
|
y=ball.r,
|
||||||
|
color="k",
|
||||||
|
linestyle="--",
|
||||||
|
label=f"Ground contact (h={ball.r}m)",
|
||||||
|
linewidth=1,
|
||||||
|
)
|
||||||
|
ax1.axhline(
|
||||||
|
y=0, color="gray", linestyle="-", label="Ground level", linewidth=1, alpha=0.5
|
||||||
|
)
|
||||||
|
|
||||||
|
# Mark transitions
|
||||||
|
for t_trans in ball.transition_times:
|
||||||
|
ax1.axvline(x=t_trans, color="green", linestyle=":", alpha=0.3, linewidth=1)
|
||||||
|
|
||||||
|
ax1.set_xlabel("Time (s)", fontsize=11)
|
||||||
|
ax1.set_ylabel("Position (m)", fontsize=11)
|
||||||
|
ax1.set_title("Ball Position vs Time", fontsize=12, fontweight="bold")
|
||||||
|
ax1.grid(True, alpha=0.3)
|
||||||
|
ax1.legend(fontsize=9)
|
||||||
|
|
||||||
|
# Add colorbar
|
||||||
|
cbar1 = plt.colorbar(scatter, ax=ax1)
|
||||||
|
cbar1.set_label("State", fontsize=10)
|
||||||
|
cbar1.set_ticks([1.33, 1.67])
|
||||||
|
cbar1.set_ticklabels(["Free Fall", "Spring-Damper"])
|
||||||
|
|
||||||
|
# Plot 2: Velocity vs Time
|
||||||
|
ax2 = axes[1, 0] if show_phase else axes[1]
|
||||||
|
scatter2 = ax2.scatter(t, y[:, 1], c=state_numeric, s=1, cmap="coolwarm", alpha=0.6)
|
||||||
|
|
||||||
|
# Mark transitions
|
||||||
|
for t_trans in ball.transition_times:
|
||||||
|
ax2.axvline(x=t_trans, color="green", linestyle=":", alpha=0.3, linewidth=1)
|
||||||
|
|
||||||
|
ax2.axhline(y=0, color="k", linestyle="--", linewidth=1, alpha=0.3)
|
||||||
|
ax2.set_xlabel("Time (s)", fontsize=11)
|
||||||
|
ax2.set_ylabel("Velocity (m/s)", fontsize=11)
|
||||||
|
ax2.set_title("Ball Velocity vs Time", fontsize=12, fontweight="bold")
|
||||||
|
ax2.grid(True, alpha=0.3)
|
||||||
|
|
||||||
|
# Add colorbar
|
||||||
|
cbar2 = plt.colorbar(scatter2, ax=ax2)
|
||||||
|
cbar2.set_label("State", fontsize=10)
|
||||||
|
cbar2.set_ticks([1.33, 1.67])
|
||||||
|
cbar2.set_ticklabels(["Free Fall", "Spring-Damper"])
|
||||||
|
|
||||||
|
if show_phase:
|
||||||
|
# Plot 3: Phase Portrait
|
||||||
|
ax3 = axes[0, 1]
|
||||||
|
scatter3 = ax3.scatter(
|
||||||
|
y[:, 0], y[:, 1], c=state_numeric, s=1, cmap="coolwarm", alpha=0.6
|
||||||
|
)
|
||||||
|
ax3.axvline(
|
||||||
|
x=ball.r, color="k", linestyle="--", label=f"Contact threshold", linewidth=1
|
||||||
|
)
|
||||||
|
ax3.axhline(y=0, color="gray", linestyle="-", linewidth=1, alpha=0.5)
|
||||||
|
ax3.set_xlabel("Position (m)", fontsize=11)
|
||||||
|
ax3.set_ylabel("Velocity (m/s)", fontsize=11)
|
||||||
|
ax3.set_title("Phase Portrait", fontsize=12, fontweight="bold")
|
||||||
|
ax3.grid(True, alpha=0.3)
|
||||||
|
ax3.legend(fontsize=9)
|
||||||
|
|
||||||
|
# Add colorbar
|
||||||
|
cbar3 = plt.colorbar(scatter3, ax=ax3)
|
||||||
|
cbar3.set_label("State", fontsize=10)
|
||||||
|
cbar3.set_ticks([1.33, 1.67])
|
||||||
|
cbar3.set_ticklabels(["Free Fall", "Spring-Damper"])
|
||||||
|
|
||||||
|
# Plot 4: Energy
|
||||||
|
ax4 = axes[1, 1]
|
||||||
|
|
||||||
|
# Calculate energies
|
||||||
|
KE = 0.5 * ball.m * y[:, 1] ** 2
|
||||||
|
PE = ball.m * ball.g * y[:, 0]
|
||||||
|
|
||||||
|
# Elastic potential energy when compressed
|
||||||
|
elastic_PE = np.zeros_like(y[:, 0])
|
||||||
|
for i, (pos, state) in enumerate(zip(y[:, 0], states)):
|
||||||
|
if state == "spring_damper" and pos < ball.r:
|
||||||
|
compression = ball.r - pos
|
||||||
|
elastic_PE[i] = 0.5 * ball.k * compression**2
|
||||||
|
|
||||||
|
total_E = KE + PE + elastic_PE
|
||||||
|
|
||||||
|
ax4.plot(t, KE, label="Kinetic", linewidth=1.5, alpha=0.7)
|
||||||
|
ax4.plot(t, PE, label="Gravitational PE", linewidth=1.5, alpha=0.7)
|
||||||
|
ax4.plot(t, elastic_PE, label="Elastic PE", linewidth=1.5, alpha=0.7)
|
||||||
|
ax4.plot(t, total_E, label="Total", linewidth=2, color="black", linestyle="--")
|
||||||
|
|
||||||
|
# Mark transitions
|
||||||
|
for t_trans in ball.transition_times:
|
||||||
|
ax4.axvline(x=t_trans, color="green", linestyle=":", alpha=0.3, linewidth=1)
|
||||||
|
|
||||||
|
ax4.set_xlabel("Time (s)", fontsize=11)
|
||||||
|
ax4.set_ylabel("Energy (J)", fontsize=11)
|
||||||
|
ax4.set_title("Energy Components", fontsize=12, fontweight="bold")
|
||||||
|
ax4.grid(True, alpha=0.3)
|
||||||
|
ax4.legend(fontsize=9)
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
return fig
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Create ball with specific parameters
|
||||||
|
ball = HybridBouncingBall(
|
||||||
|
m=0.10, # 1 kg mass
|
||||||
|
r=0.1, # 10 cm radius
|
||||||
|
g=9.81, # Earth gravity
|
||||||
|
k=500.0, # Spring constant
|
||||||
|
c=0.89, # Damping coefficient
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initial conditions: drop from 2 meters with zero velocity
|
||||||
|
y0 = [1.0, 0.0] # [position (m), velocity (m/s)]
|
||||||
|
|
||||||
|
# Simulate for 5 seconds
|
||||||
|
t_span = (0, 5.0)
|
||||||
|
|
||||||
|
print("Simulating hybrid bouncing ball system...")
|
||||||
|
print(f"Initial conditions: h0 = {y0[0]} m, v0 = {y0[1]} m/s")
|
||||||
|
print(
|
||||||
|
f"Ball parameters: m={ball.m} kg, r={ball.r} m, k={ball.k} N/m, c={ball.c} N·s/m"
|
||||||
|
)
|
||||||
|
print()
|
||||||
|
|
||||||
|
t, y, states = ball.simulate(y0, t_span, max_transitions=30)
|
||||||
|
|
||||||
|
print(f"Simulation complete!")
|
||||||
|
print(f"Total time simulated: {t[-1]:.3f} s")
|
||||||
|
print(f"Number of state transitions: {len(ball.transition_times)}")
|
||||||
|
print(f"Transition times: {[f'{tt:.3f}' for tt in ball.transition_times[:10]]}")
|
||||||
|
print()
|
||||||
|
|
||||||
|
# Count time in each state
|
||||||
|
free_fall_count = states.count("free_fall")
|
||||||
|
spring_damper_count = states.count("spring_damper")
|
||||||
|
total_points = len(states)
|
||||||
|
|
||||||
|
print(f"Time distribution:")
|
||||||
|
print(f" Free fall: {free_fall_count/total_points*100:.1f}%")
|
||||||
|
print(f" Spring-damper: {spring_damper_count/total_points*100:.1f}%")
|
||||||
|
|
||||||
|
# Plot results
|
||||||
|
fig = plot_simulation(t, y, states, ball, show_phase=True)
|
||||||
|
plt.savefig(
|
||||||
|
"/home/danesabo/Documents/Dane's Vault/Presentations/ERLM/bouncing_ball_hybrid.png",
|
||||||
|
dpi=300,
|
||||||
|
bbox_inches="tight",
|
||||||
|
)
|
||||||
|
print(f"\nPlot saved to: bouncing_ball_hybrid.png")
|
||||||
|
plt.show()
|
||||||
Loading…
x
Reference in New Issue
Block a user