vault backup: 2024-10-17 10:50:13
This commit is contained in:
parent
c73549538a
commit
371a72f95f
@ -0,0 +1,53 @@
|
|||||||
|
---
|
||||||
|
readstatus: false
|
||||||
|
dateread:
|
||||||
|
title: "Control Bootcamp: Limitations on Robustness"
|
||||||
|
year: 2017
|
||||||
|
authors:
|
||||||
|
|
||||||
|
|
||||||
|
- "Steve Brunton"
|
||||||
|
|
||||||
|
|
||||||
|
citekey: "stevebruntonControlBootcampLimitations2017"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
# Indexing Information
|
||||||
|
## DOI
|
||||||
|
[](https://doi.org/)
|
||||||
|
## ISBN
|
||||||
|
[](https://www.isbnsearch.org/isbn/)
|
||||||
|
## Tags:
|
||||||
|
|
||||||
|
|
||||||
|
>[!Abstract]
|
||||||
|
>This video describes some of the fundamental limitations of robustness, including time delays and right-half plane zeros.
|
||||||
|
|
||||||
|
Code available at: faculty.washington.edu/sbrunton/control_bootcamp_code.zip
|
||||||
|
|
||||||
|
These lectures follow Chapters 1 & 3 from:
|
||||||
|
|
||||||
|
Machine learning control, by Duriez, Brunton, & Noack
|
||||||
|
https://www.amazon.com/Machine-Learni...
|
||||||
|
|
||||||
|
Chapters available at: http://faculty.washington.edu/sbrunto...
|
||||||
|
|
||||||
|
This video was produced at the University of Washington
|
||||||
|
|
||||||
|
>[!note] Markdown Notes
|
||||||
|
>None!
|
||||||
|
|
||||||
|
>[!seealso] Related Papers
|
||||||
|
>
|
||||||
|
|
||||||
|
# Annotations
|
||||||
|
|
||||||
|
### Imported: 2024-10-17 10:42 am
|
||||||
|
|
||||||
|
|
||||||
@ -0,0 +1,53 @@
|
|||||||
|
---
|
||||||
|
readstatus: false
|
||||||
|
dateread:
|
||||||
|
title: "Control Bootcamp: Sensitivity and Robustness"
|
||||||
|
year: 2017
|
||||||
|
authors:
|
||||||
|
|
||||||
|
|
||||||
|
- "Steve Brunton"
|
||||||
|
|
||||||
|
|
||||||
|
citekey: "stevebruntonControlBootcampSensitivity2017"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
# Indexing Information
|
||||||
|
## DOI
|
||||||
|
[](https://doi.org/)
|
||||||
|
## ISBN
|
||||||
|
[](https://www.isbnsearch.org/isbn/)
|
||||||
|
## Tags:
|
||||||
|
|
||||||
|
|
||||||
|
>[!Abstract]
|
||||||
|
>Here we show that peaks in the sensitivity function result in a lack of robustness.
|
||||||
|
|
||||||
|
Code available at: faculty.washington.edu/sbrunton/control_bootcamp_code.zip
|
||||||
|
|
||||||
|
These lectures follow Chapters 1 & 3 from:
|
||||||
|
|
||||||
|
Machine learning control, by Duriez, Brunton, & Noack
|
||||||
|
https://www.amazon.com/Machine-Learni...
|
||||||
|
|
||||||
|
Chapters available at: http://faculty.washington.edu/sbrunto...
|
||||||
|
|
||||||
|
This video was produced at the University of Washington
|
||||||
|
|
||||||
|
>[!note] Markdown Notes
|
||||||
|
>None!
|
||||||
|
|
||||||
|
>[!seealso] Related Papers
|
||||||
|
>
|
||||||
|
|
||||||
|
# Annotations
|
||||||
|
|
||||||
|
### Imported: 2024-10-17 10:43 am
|
||||||
|
|
||||||
|
|
||||||
@ -11066,6 +11066,30 @@ Subject\_term: Careers, Politics, Policy},
|
|||||||
abstract = {This video motivates robust control with the famous 1978 paper by John Doyle, titled "Guaranteed Margins for LQG Regulators"... Abstract: There are none. Code available at: faculty.washington.edu/sbrunton/control\_bootcamp\_code.zip These lectures follow Chapters 1 \& 3 from: Machine learning control, by Duriez, Brunton, \& Noack https://www.amazon.com/Machine-Learni... Chapters available at: http://faculty.washington.edu/sbrunto... This video was produced at the University of Washington}
|
abstract = {This video motivates robust control with the famous 1978 paper by John Doyle, titled "Guaranteed Margins for LQG Regulators"... Abstract: There are none. Code available at: faculty.washington.edu/sbrunton/control\_bootcamp\_code.zip These lectures follow Chapters 1 \& 3 from: Machine learning control, by Duriez, Brunton, \& Noack https://www.amazon.com/Machine-Learni... Chapters available at: http://faculty.washington.edu/sbrunto... This video was produced at the University of Washington}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@video{stevebruntonControlBootcampLimitations2017,
|
||||||
|
entrysubtype = {video},
|
||||||
|
title = {Control {{Bootcamp}}: {{Limitations}} on {{Robustness}}},
|
||||||
|
shorttitle = {Control {{Bootcamp}}},
|
||||||
|
editor = {{Steve Brunton}},
|
||||||
|
editortype = {director},
|
||||||
|
date = {2017-03-08},
|
||||||
|
url = {https://www.youtube.com/watch?v=ReAmUJMb1d8},
|
||||||
|
urldate = {2024-10-17},
|
||||||
|
abstract = {This video describes some of the fundamental limitations of robustness, including time delays and right-half plane zeros. Code available at: faculty.washington.edu/sbrunton/control\_bootcamp\_code.zip These lectures follow Chapters 1 \& 3 from: Machine learning control, by Duriez, Brunton, \& Noack https://www.amazon.com/Machine-Learni... Chapters available at: http://faculty.washington.edu/sbrunto... This video was produced at the University of Washington}
|
||||||
|
}
|
||||||
|
|
||||||
|
@video{stevebruntonControlBootcampSensitivity2017,
|
||||||
|
entrysubtype = {video},
|
||||||
|
title = {Control {{Bootcamp}}: {{Sensitivity}} and {{Robustness}}},
|
||||||
|
shorttitle = {Control {{Bootcamp}}},
|
||||||
|
editor = {{Steve Brunton}},
|
||||||
|
editortype = {director},
|
||||||
|
date = {2017-03-08},
|
||||||
|
url = {https://www.youtube.com/watch?v=7lzH-HnUFZg},
|
||||||
|
urldate = {2024-10-17},
|
||||||
|
abstract = {Here we show that peaks in the sensitivity function result in a lack of robustness. Code available at: faculty.washington.edu/sbrunton/control\_bootcamp\_code.zip These lectures follow Chapters 1 \& 3 from: Machine learning control, by Duriez, Brunton, \& Noack https://www.amazon.com/Machine-Learni... Chapters available at: http://faculty.washington.edu/sbrunto... This video was produced at the University of Washington}
|
||||||
|
}
|
||||||
|
|
||||||
@article{stiasnyPhysicsInformedNeuralNetworks2023,
|
@article{stiasnyPhysicsInformedNeuralNetworks2023,
|
||||||
title = {Physics-{{Informed Neural Networks}} for {{Time-Domain Simulations}}: {{Accuracy}}, {{Computational Cost}}, and {{Flexibility}}},
|
title = {Physics-{{Informed Neural Networks}} for {{Time-Domain Simulations}}: {{Accuracy}}, {{Computational Cost}}, and {{Flexibility}}},
|
||||||
shorttitle = {Physics-{{Informed Neural Networks}} for {{Time-Domain Simulations}}},
|
shorttitle = {Physics-{{Informed Neural Networks}} for {{Time-Domain Simulations}}},
|
||||||
|
|||||||
@ -99,3 +99,11 @@ W_2 is basically a transfer function that will always be greater in magnitude th
|
|||||||
>>[!important] Robust Performance
|
>>[!important] Robust Performance
|
||||||
>>$$ |||W_1 S | + |W_2 T| ||_\infty < 1 $$
|
>>$$ |||W_1 S | + |W_2 T| ||_\infty < 1 $$
|
||||||
>>![[Pasted image 20241015172708.png]]
|
>>![[Pasted image 20241015172708.png]]
|
||||||
|
|
||||||
|
Something really helpful to think about came to mind as a result of watching a Steve Brunton video[^1]. Think about the way that loop gain works:
|
||||||
|
$$ y = \frac{L}{1+L} r $$
|
||||||
|
If at a certain frequency $\omega$, L approaches -1, big problems happen. What this means is that the denominator in the above equation gets really small, which means the gain from r to y actually gets really big. If it IS -1, immediate undefined blow up.
|
||||||
|
|
||||||
|
This is where robustness comes from. The distance between L and -1 for all frequencies is what robustness is. Less distance, less room for plant perturbation that could make you unstable. More distance, safer response.
|
||||||
|
|
||||||
|
[^1]: [[stevebruntonControlBootcampSensitivity2017]]
|
||||||
Loading…
x
Reference in New Issue
Block a user