vault backup: 2024-09-30 14:52:52
This commit is contained in:
parent
927f4ef31d
commit
2a9e0d848e
@ -62,3 +62,35 @@ Therefore limit cycles are not possible.
|
||||
This is a method covered in the book. Sometimes is used to rule out limit cycles.
|
||||
### Poincare - Bendixon Theorem.
|
||||
Book!
|
||||
# Perturbation Methods
|
||||
- Weakly nonlinear systems
|
||||
Linear Resonator:
|
||||
$m \ddot x + b \dot x + kx = f$
|
||||
Weakly Nonlinear:
|
||||
$m \ddot x + b \dot x + kx + \alpha x^3 = f$
|
||||
With a bookkeeping term:
|
||||
$m \ddot x + b \dot x + kx + \epsilon \alpha x^3 = f$
|
||||
|
||||
## Asymptotic Expansion
|
||||
$x \neq x(t) \rightarrow x = x(t,\epsilon)$
|
||||
$x(t,\epsilon) = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + ... + \text{H.O.T.s}$
|
||||
Looking for solutions that are like
|
||||
$$x(t,\epsilon) ~ \sum_{k=0}^{\inf} x_k(t) \delta_c(\epsilon)$$
|
||||
Where $\delta$ is an asymptotically scaling number. This series sometimes doesn't converge but still gives useful information about the solution.
|
||||
**Example:**
|
||||
for $x>=0$
|
||||
$$\dot x + x - \epsilon x^2 = 0, x(0) = 2$$
|
||||
Develop a 3 term approximation using asymptotic expansion:
|
||||
$$x(t,\epsilon) = x_o(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + ...$$
|
||||
$$\dot x(t,\epsilon) = \dot x_o(t) + \epsilon \dot x_1(t) + \epsilon^2 \dot x_2(t) + ...$$
|
||||
Sub into the EOM:, and satisfy initial conditions $x_0(2) = 0; x_1(0) = x_2(0) = 0$
|
||||
$$ \dot x_o(t) + \epsilon \dot x_1(t) + \epsilon^2 \dot x_2(t) + x_o(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) - \epsilon (x_o(t) + \epsilon x_1(t) + \epsilon^2 x_2(t))^2 = 0 $$
|
||||
Now that last term is going to yield higher order $\epsilon$ terms ($^2, ^4$). We can't get rid of these, we'll need to keep them.
|
||||
Now collect terms:
|
||||
|
||||
| Power | Expression |
|
||||
| ----- | ---------- |
|
||||
| $\epsilon^0$ | $\dot x_0 + x_0 = 0 \rightarrow x_0 = c_1e^{-t} \rightarrow x_0 = 2 e^{-t}$|
|
||||
| $\epsilon^2$ | $\dot x_1 + x_1 - x_0^2 = 0 \rightarrow \dot x_1 + x_1 - 4 e^{2t} = 0 \rightarrow x_1 = 4(e^{-t} - 2e^{-2t})$ |
|
||||
| $\epsilon^3$ | $\dot x_2 + x_2 -2(2e^{-t})(4 e^{-t} - e^{-2t}) \rightarrow ...$ |
|
||||
Then we have an approximate solution for small $\epsilon$. What small means depends on the problem...
|
||||
Loading…
x
Reference in New Issue
Block a user