vault backup: 2024-11-25 15:36:11
This commit is contained in:
parent
e1e2940bc0
commit
25e296e862
@ -265,6 +265,144 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
|||||||
- Example journal or conference targets.
|
- Example journal or conference targets.
|
||||||
- Overview of the dissemination process.
|
- Overview of the dissemination process.
|
||||||
# Metrics of Success
|
# Metrics of Success
|
||||||
|
## **Slide 1: Metrics of Success Overview**
|
||||||
|
|
||||||
|
**Assertion:** Project success will be evaluated through milestone tracking and outcome-based metrics.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
1. Goals and Outcomes: Milestones tied to the objectives of this research.
|
||||||
|
2. Unstructured Perturbation Evaluation: Metrics to assess diffusion model output.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- High-level flowchart showing the two categories of success metrics.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Slide 2: Goals and Outcomes**
|
||||||
|
|
||||||
|
**Assertion:** The research aims to deliver specific capabilities for creating unstructured perturbations.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
- Approximate unstructured sets through numerous perturbed plants.
|
||||||
|
- Perturb nominal plants using the diffusion model.
|
||||||
|
- Generate frequency-domain responses from training data.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- Table summarizing the three goals and their significance.
|
||||||
|
- Conceptual graphic of a nominal plant with perturbed versions around it.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Slide 3: Unstructured Perturbation Evaluation**
|
||||||
|
|
||||||
|
**Assertion:** The diffusion model's success will be judged on distribution and diversity of perturbations.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
- Distribution: Verify uniform coverage of the multiplicative uncertainty disk.
|
||||||
|
- Diversity: Assess non-parametric, dissimilar perturbations among examples.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- Example complex plane with plotted perturbed plants.
|
||||||
|
- Graph comparing similarity metrics across perturbations.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Slide 4: Statistical Evaluation (Optional Deep Dive)**
|
||||||
|
|
||||||
|
**Assertion:** Statistical analysis ensures robustness and diversity in generated perturbations.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
- Standard statistical tests applied to the perturbation set.
|
||||||
|
- Covariance vectors calculated for key frequency ranges.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- Example statistical output or covariance plot for one frequency band.
|
||||||
|
- Caption explaining its role in validating uniform coverage.
|
||||||
# Risks and Contingencies
|
# Risks and Contingencies
|
||||||
#
|
## **Slide 1: Risks and Contingencies Overview**
|
||||||
|
|
||||||
|
**Assertion:** This research has identified key risks and developed contingencies to address them.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
1. Computational demands of diffusion models.
|
||||||
|
2. Training data sufficiency.
|
||||||
|
3. Generalization of interpolation methods to perturbations.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- A risk-contingency matrix outlining the key challenges and corresponding mitigations.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Slide 2: Risk 1 - Computational Demands**
|
||||||
|
|
||||||
|
**Assertion:** Diffusion models may require significant computational resources during training and inference.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
- Reverse process inference is computationally intensive due to per-step calculations.
|
||||||
|
- Training complexity scales with model structure and feature count.
|
||||||
|
|
||||||
|
**Contingencies:**
|
||||||
|
|
||||||
|
1. Utilize the University of Pittsburgh’s CRC supercomputing resources.
|
||||||
|
2. Reduce data features while monitoring model performance.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- Diagram comparing computational cost across time steps.
|
||||||
|
- Icon of computational resources with CRC logo or similar.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Slide 3: Risk 2 - Insufficient Training Data**
|
||||||
|
|
||||||
|
**Assertion:** Structured perturbations alone may not condition the model adequately.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
- Structured perturbations simplify training but may lack diversity.
|
||||||
|
|
||||||
|
**Contingencies:**
|
||||||
|
|
||||||
|
1. Augment training with manually or algorithmically generated $\Delta$ examples (e.g., bounded by supermum gain $\beta$).
|
||||||
|
2. Diversify training data sources to improve robustness.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- Example of structured vs. manual perturbation samples on the complex plane.
|
||||||
|
- Flowchart showing training data augmentation process.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## **Slide 4: Risk 3 - Interpolation Limitations**
|
||||||
|
|
||||||
|
**Assertion:** Interpolation methods may fail to regulate perturbations effectively.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
- Image-based interpolation success may not generalize to this domain.
|
||||||
|
|
||||||
|
**Contingencies:**
|
||||||
|
|
||||||
|
1. Implement $r(\mathcal{P}_t)$-based reverse process steering for controlled perturbations【cite sources】.
|
||||||
|
2. Explore alternative interpolation techniques tailored to frequency domain applications.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- Conceptual illustration of $r(\mathcal{P}_t)$ steering function in reverse process.
|
||||||
|
- Example showing failure of simple interpolation and correction with $r(\mathcal{P}_t)$.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Slide 5: Risk Mitigation Framework (Optional Summary Slide)
|
||||||
|
|
||||||
|
**Assertion:** Addressing risks proactively ensures project success.
|
||||||
|
|
||||||
|
- **Evidence:**
|
||||||
|
- Computational strategies, diversified training, and alternative steering methods safeguard outcomes.
|
||||||
|
|
||||||
|
**Visuals:**
|
||||||
|
|
||||||
|
- Funnel graphic showing risks addressed through mitigations leading to project success.
|
||||||
Loading…
x
Reference in New Issue
Block a user