vault backup: 2024-10-15 17:01:01
This commit is contained in:
parent
c6ca56802e
commit
1cc63c4309
@ -83,4 +83,6 @@ $$ \left[\matrix{e \\u}\right] = -\left[\matrix{PS & S \\ T & CS}\right] \left[\
|
|||||||
> If $||\Delta||_\infty <1$:
|
> If $||\Delta||_\infty <1$:
|
||||||
> $$ \left| \frac{\tilde P (j\omega)}{P(j\omega)} - 1 \right| \leq | W_2(j\omega) | \text{ , } \forall \omega$$
|
> $$ \left| \frac{\tilde P (j\omega)}{P(j\omega)} - 1 \right| \leq | W_2(j\omega) | \text{ , } \forall \omega$$
|
||||||
|
|
||||||
$|W_2(j\omega)|$ is the uncertainty profile. This inequality describes a disk in teh complex plane: at each frequency the point P~/P lies in the disk with center 1, radius |W_2|.
|
$|W_2(j\omega)|$ is the uncertainty profile. This inequality describes a disk in teh complex plane: at each frequency the point P~/P lies in the disk with center 1, radius |W_2|.
|
||||||
|
|
||||||
|
W_2 is basically a transfer function that will always be greater in magnitude than that P~/P -1
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user