vault backup: 2024-11-25 15:25:57
This commit is contained in:
parent
536cb4cb8e
commit
0725c44c61
@ -4,7 +4,7 @@
|
||||
"anuppuccin-theme-settings-extended@@anp-theme-ext-light": true,
|
||||
"anuppuccin-theme-settings-extended@@anp-theme-ext-dark": true,
|
||||
"anuppuccin-theme-settings-extended@@catppuccin-theme-extended": "ctp-notion-light",
|
||||
"anuppuccin-theme-settings-extended@@catppuccin-theme-dark-extended": "ctp-generic-dark",
|
||||
"anuppuccin-theme-settings-extended@@catppuccin-theme-dark-extended": "ctp-gruvbox-dark",
|
||||
"anuppuccin-theme-settings@@anuppuccin-theme-dark": "ctp-frappe",
|
||||
"anuppuccin-theme-settings@@anp-custom-checkboxes": true,
|
||||
"anuppuccin-theme-settings@@anp-speech-bubble": true,
|
||||
|
||||
@ -14,7 +14,7 @@ Ideas taken from https://services.anu.edu.au/files/development_opportunity/Resea
|
||||
- As a result, we need to reverify robustness on built controllers
|
||||
- This exists for structured perturbations. We
|
||||
# Gap In The Literature
|
||||
### **Slide 1: Robust Control Foundations**
|
||||
## **Slide 1: Robust Control Foundations**
|
||||
|
||||
**Assertion:** Robust control ensures stability despite system discrepancies.
|
||||
**Evidence:**
|
||||
@ -26,7 +26,7 @@ Ideas taken from https://services.anu.edu.au/files/development_opportunity/Resea
|
||||
|
||||
---
|
||||
|
||||
### **Slide 2: Structured vs. Unstructured Perturbations**
|
||||
## **Slide 2: Structured vs. Unstructured Perturbations**
|
||||
|
||||
**Assertion:** Robust control addresses structured and unstructured perturbations differently.
|
||||
**Evidence:**
|
||||
@ -38,7 +38,7 @@ Ideas taken from https://services.anu.edu.au/files/development_opportunity/Resea
|
||||
|
||||
---
|
||||
|
||||
### **Slide 3: Disk-Based Unstructured Uncertainty**
|
||||
## **Slide 3: Disk-Based Unstructured Uncertainty**
|
||||
|
||||
**Assertion:** Disk-based perturbation quantifies unstructured uncertainties.
|
||||
**Evidence:**
|
||||
@ -55,7 +55,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 4: Current Limitations in Robust Control**
|
||||
## **Slide 4: Current Limitations in Robust Control**
|
||||
|
||||
**Assertion:** Current methods lack discrete examples of unstructured perturbations.
|
||||
**Evidence:**
|
||||
@ -66,7 +66,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 5: Diffusion Models as a Solution**
|
||||
## **Slide 5: Diffusion Models as a Solution**
|
||||
|
||||
**Assertion:** Diffusion models can generate unstructured perturbations.
|
||||
**Evidence:**
|
||||
@ -79,7 +79,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 6: Parallels Between Diffusion Models and This Project**
|
||||
## **Slide 6: Parallels Between Diffusion Models and This Project**
|
||||
|
||||
**Assertion:** Diffusion models address sparse perturbation generation in engineering.
|
||||
**Evidence:**
|
||||
@ -90,7 +90,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
# Goals and Outcomes
|
||||
|
||||
# Research Methodology
|
||||
### **Slide 1: Research Motivation**
|
||||
## **Slide 1: Research Motivation**
|
||||
|
||||
**Assertion:** Current methods for generating unstructured perturbations are limited in flexibility and generalizability.
|
||||
|
||||
@ -104,7 +104,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 2: Diffusion Model Features**
|
||||
## **Slide 2: Diffusion Model Features**
|
||||
|
||||
**Assertion:** Frequency response data forms the foundation for feature creation in diffusion models.
|
||||
|
||||
@ -118,7 +118,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 3: Creating Frequency Features**
|
||||
## **Slide 3: Creating Frequency Features**
|
||||
|
||||
**Assertion:** Discretizing the frequency response enables scalable feature sets.
|
||||
|
||||
@ -133,7 +133,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 4: Training the Diffusion Model**
|
||||
## **Slide 4: Training the Diffusion Model**
|
||||
|
||||
**Assertion:** Diffusion models learn unstructured perturbations through iterative noise transformation.
|
||||
|
||||
@ -148,7 +148,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 5: Generating New Perturbations**
|
||||
## **Slide 5: Generating New Perturbations**
|
||||
|
||||
**Assertion:** The trained diffusion model generates diverse and flexible perturbations.
|
||||
|
||||
@ -163,7 +163,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 6: Ensuring Valid Perturbations**
|
||||
## **Slide 6: Ensuring Valid Perturbations**
|
||||
|
||||
**Assertion:** Generated perturbations must meet robust control requirements.
|
||||
|
||||
@ -178,7 +178,7 @@ _(Include a visual of how $\Delta$ affects $P$)_
|
||||
|
||||
---
|
||||
|
||||
### **Slide 7: Advantages of Diffusion Models**
|
||||
## **Slide 7: Advantages of Diffusion Models**
|
||||
|
||||
**Assertion:** Diffusion models provide a novel solution for generating unstructured perturbations.
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user