Homework 1: Random Number Generators
ME 2243 Bayesian Signal Processing

Dane Sabo

January 21, 2026

ATl Use Statement

This homework was completed with the assistance of Claude Code (Anthropic’s CLI tool for
Claude), using the Claude Opus 4.5 model.

How AI Was Used

Learning Rust: Claude helped explain Rust concepts like traits, ownership, and idiomatic
patterns as I implemented the PRNGs. The explanations helped me understand why certain
approaches are preferred in Rust.

Debugging: When code didn’t compile or produced unexpected results (e.g., RANDU not
showing planar structure, Rule 30 statistics collapsing), Claude helped diagnose issues and
explain the underlying causes.

Plotting Code: Claude wrote the plotters library boilerplate for generating histograms
and 3D scatter plots, allowing me to focus on the PRNG algorithms themselves.

PCG32 Implementation: As specified in Problem 3, Claude generated the PCG32 code
from a prompt. I then annotated the code with my own comments explaining each section.

LaTeX Report: Claude helped structure this report, filled in a lot of the fluff including code
formatting and organization.

Mathematical Verification: Claude suggested the mathematical verification of RANDU’s
planar constraint, demonstrating that z, o = 6x,+1 — 92, (mod 231) holds for all triplets.

What I Did Myself

Implemented the LCG, LFSR (Xorshift), and Rule 30 algorithms based on the homework
specifications

Designed the code architecture (trait-based polymorphism)
Annotated the PCG32 code with my own understanding

All analysis sections in this report

N

1 Preamble: Implementation in Rust

This homework was implemented in Rust, a systems programming language known for its memory
safety, performance, and expressive type system. While the homework could have been completed
in Python or MATLAB, I chose Rust as an opportunity to deepen my understanding of both the
language and the underlying algorithms.

1.1 Why Rust?

Rust offers several advantages for implementing PRNGs:
e Performance: Rust compiles to native code, making bit operations and loops extremely fast
e Type Safety: The compiler catches many errors at compile time

o Explicit Integer Types: Rust has explicit u32, u64 types, making bit-width considerations
clear

e No Hidden Overflow: Rust requires explicit handling of integer overflow via wrapping_mul,
wrapping_add, etc.

1.2 Code Architecture

The code is organized as a Rust library with separate binary executables for each problem:

src/
lib.rs -- Trait definition and module exports
lcg.rs -- Linear Congruential Generator
lfsr.rs -- Linear Feedback Shift Register (Xorshift)
pcg.rs -- Permuted Congruential Generator
rule30.rs -- Rule 30 Cellular Automaton
bin/
probleml.rs -- LCG analysis and comparison
problem2.rs -- LFSR analysis
problem3.rs -- PCG32 analysis
problem4.rs -- Rule 30 analysis

1.3 The RandomGenerator Trait

A key feature of Rust is traits, which define shared behavior across types (similar to interfaces in
other languages). All PRNGs implement a common trait:

pub trait RandomGenerator {
/// Generate the next random integer
fn next (&mut self) -> u64;

/// Return the modulus (range) of the generator
fn modulus (&self) -> u64;

// Default implementations provided for free:
fn next_uniform(&mut self) -> f64 {
self .next() as f64 / self.modulus() as f64

V]

}

fn generate_samples (&mut self, n: u64) -> Vec<f64> {
(0..n) .map(l_| self.next_uniform()).collect ()
b

This means each PRNG only needs to implement next () and modulus (), and automatically re-
ceives next_uniform() and generate_samples() for free. This is Rust’s approach to polymorphism—
composition over inheritance.

1.4 Key Rust Syntax for Non-Rustaceans
For readers unfamiliar with Rust:
e let mut x = 5; — Declare a mutable variable
e &self — Borrow (read-only reference to) self
e &mut self — Mutable borrow of self
e x.wrapping_mul(y) — Multiply with wraparound on overflow
e x <« n — Left bit shift by n positions

e x » n — Right bit shift by n positions

x "~ y — XOR operation

Vec<f64> — A dynamic array (vector) of 64-bit floats

e impl Trait for Type — Implement a trait for a specific type

2 Problem 1: Linear Congruential Generator

2.1 Part (a): LCG Implementation

The Linear Congruential Generator follows the recurrence relation:

zn = (a-2p—1+c) modm (1)

Un = Tp/m (2)

Listing 1: LCG Implementation (src/lcg.rs)

pub struct Lcg {
state: u64,

a: u6b4, // multiplier
c: u64d, // increment
m: u6d, // modulus

}

impl Lcg {

pub fn new(seed: u64, a: u6d, c: u64, m: ubd) -> Self {
Lcg { state: seed, a, c, m }

}

impl RandomGenerator for Lcg {
fn next (&mut self) -> u64 {
self .state = (self.a.wrapping_mul(self.state)
.wrapping_add(self.c)) % self.m;
self.state

3

fn modulus (&self) -> u64 {
self.m

}

The wrapping_mul and wrapping_add functions handle potential integer overflow by wrapping
around, which is the correct behavior for modular arithmetic.

2.2 Part (b): Good LCG vs RANDU Comparison

Two LCGs were compared:
e Good LCG: a = 1664525, ¢ = 1013904223, m = 23!

¢ RANDU: a¢ = 65539, c =0, m = 23!

2.2.1 Statistical Results

Metric Good LCG RANDU
Mean 0.500304 0.502041
Std Dev 0.287667 0.287818
Expected Mean 0.5 0.5

Expected Std Dev 0.288675 0.288675

Table 1: Statistical comparison of Good LCG and RANDU over 16,384 samples

Both generators produce statistics very close to the expected values for a uniform distribution on
[0,1). The expected standard deviation is /1/12 ~ 0.2887.

2.2.2 Histograms

Good LCG - Histogram) RANDU - Histogram

4000 4000

(a) Good LCG (b) RANDU

Figure 1: Histograms of Good LCG and RANDU. Both appear uniformly distributed.

2.2.3 3D Scatter Plots

Good LCG:- 3D Scatter RANDU - 3Ds8catter (Shows Planar Structure)
o) semmegm W L 027 " opgmetm ge e ee

(a) Good LCG — uniform fill (b) RANDU - visible planar structure

Figure 2: 3D scatter plots of consecutive triplets (uy, Up+1, Un+2)

2.2.4 Analysis

RANDU’s failing is immediately clear from the 3D scatter plots. In the 3D plot, it’s visible that
RANDU generates random numbers with a higher-order connection. Any triplet of RANDU num-
bers will lie on one of 15 planes in the unit-cube. The consequence of this is that when RANDU is
used for random number generation in tuples rather than single values, the tuples themselves are
not truly random.

Mathematical Verification (Claude Aside): During development, the AT assistant suggested
a mathematical verification of RANDU’s planar structure. Every triplet of consecutive RANDU

w N

values satisfies the linear constraint:
_ 31
Tpy2 =6 Tpy1 — 9 2, (mod 2°7)

This was verified programmatically:

Triplet 0: x2=1769499, 6*x1-9%x0 (mod 2~31)=1769499, Match: true
Triplet 1: x2=7077969, 6*x1-9%x0 (mod 2°31)=7077969, Match: true
Triplet 2: x2=26542323, 6*x1-9*x0 (mod 2~31)=26542323, Match: true

This algebraic constraint means that knowing any two consecutive values completely determines
the third, which is why the points lie on planes defined by this linear equation.

3 Problem 2: Linear Feedback Shift Register (Xorshift32)

3.1 Part (a): Xorshift32 Implementation

The Xorshift32 algorithm uses XOR and bit shift operations to generate pseudo-random numbers:

T—rd(r<Ka) (3)
T4 T®(z>0b) (4)
T—Td (v <o) (5)

with parameters a = 13, b =17, ¢ = 5.

Listing 2: LFSR/Xorshift Implementation (src/lfsr.rs)

pub struct Lfsr {
state: u32,

a: u32,
b: u32,
c: u32,
m: u32,

3

impl RandomGenerator for Lfsr {
fn next (&mut self) -> u64 {
self.state = self.state ~ (self.state << self.a);
self.state = self.state ~ (self.state >> self.b);
self.state self.state =~ (self.state << self.c);
self.state as u64

}

fn modulus (&self) -> u64 {
self .m as u64d

3

The three XOR-shift operations create complex bit mixing. Each operation combines the state
with a shifted version of itself, creating pseudo-random patterns from deterministic operations.

S LI O R

3.2 Part (b): Statistical Analysis

Metric Xorshift32 Expected

Mean 0.499617 0.5
Std Dev 0.288751 0.288675

Table 2: Xorshift32 statistics over 100,000 samples

LFSR (Xorshift) - Histogram ., LFSR (Xorshif) - 3D Scatter
1 AR

RN . M

Count

1000.0

“ahe BRI PRvestt et

(a) Histogram (b) 3D Scatter Plot

Figure 3: Xorshift32 analysis showing uniform distribution and no visible correlation structure

3.2.1 Comparison to LCG

LFSR produces an indistinguishable result to the LCG random number generator with no clear
bias. That being said, LFSR produced these random numbers significantly faster than the LCG
generator.

4 Problem 3: Permuted Congruential Generator (PCG32)

4.1 Part (a): AI-Generated Code with Annotations

Per the homework instructions, the following code was generated using Claude Code with the
prompt: “Write code to implement PCGS32 in my favorite programming language (Rust!)”

The annotations (comments starting with // DAS) are my own explanations of what each part
of the code does.

Listing 3: PCG32 Implementation with Annotations (src/pcg.rs)

// DAS COMMENT:

// The prompt for creating this code was verbatim: "Write code to
// implement PCG32 <n my favorite programming language (Rust!)”
// This was generated using a Claude Code sesstion.

pub struct Pcg32 {
state: u64, // Internal LCG state (64-bit)

increment: u64, // Must be odd
}

impl Pcg32 {
// Standard PCG32 parameters
const MULTIPLIER: u64 = 6364136223846793005;
const DEFAULT_INCREMENT: u64 = 1442695040888963407;

pub fn new(seed: u64) -> Self {
// DAS - Any new instance immediately runs through
// mew_with_increment with default <increment
Pcg32::new_with_increment (seed, Self::DEFAULT_INCREMENT)

pub fn new_with_increment (seed: u64, increment: u64) -> Self A{
let mut pcg = Pcg32 {

state: O,
increment: (increment << 1) | 1,
// DAS - Ensures increment %s always odd by:

// 1. Shifting left by 1 (multiplies by 2, making LSB=0)
// 2. OR with 1 (sets LSB=1, guaranteeing odd)
};

// DAS - This is the initialization sequence.

// Claude skipped step 3 from the homework (the first LCG step
// before adding seed). It adds seed to state, then steps.
pcg.state = pcg.state.wrapping_add(seed);

pcg.step () ;

pcg
}

fn step (&mut self) {
// DAS - This ts a standard LCG step:
// state = state * multiplier + increment
self .state = self.state
.wrapping_mul (Self::MULTIPLIER)
.wrapping_add(self.increment) ;

}

fn output(state: u64) -> u32 {
// XOR high and low parts
let xorshifted = (((state >> 18) -~ state) >> 27) as u32;
let rot = (state >> 59) as u32;

// DAS - The homework says "Return (zorshifted >> rot)" but
// that would pad zeros, mnot truly rotate. Claude correctly
// uses rotate_right () for a proper bit rotation.
xorshifted.rotate_right (rot)

3

impl RandomGenerator for Pcg32 {
fn next (&mut self) -> u64 {

62 let old_state = self.state;

63 self .step();

64 // DAS - This matches the homework ezactly:
65 // 1. Save old state

66 // 2. Addvance state (LCG step)

67 // 3. Output permutation of OLD state

68 Self::output(old_state) as u64

69 }

71 fn modulus (&self) -> u64 {
72 u32::MAX as u64
73 T

4.2 Understanding PCG32

PCG32 combines two concepts:

1. LCG for state advancement: The internal 64-bit state advances using a standard LCG
with a carefully chosen multiplier. This provides the period (264) and determines the sequence.

2. Output permutation (XSH-RR): The output is derived by applying a permutation func-
tion to the state:

e XSH (Xorshift High): ((state » 18) " state) » 27 mixes the high bits with the low
bits

¢ RR (Random Rotation): The result is rotated by an amount determined by the high 5
bits of the state

The key insight is that while the LCG state has predictable low bits (they cycle with small

periods), the permutation function extracts randomness from the high-quality high bits while using
the state itself to determine how to scramble the output.

4.3 Statistical Results

Metric PCG32 Expected

Mean 0.498255 0.5
Std Dev 0.288584 0.288675

Table 3: PCG32 statistics over 100,000 samples

PCG32 - Histogram . 5_43:632 +3D Scater

&
e e .. 08

15000

10000

500

04 05 o8

tale RIS A

(a) Histogram (b) 3D Scatter Plot

Figure 4: PCG32 analysis showing excellent statistical properties (<- Claude is proud of itself)

5 Problem 4: Rule 30 Cellular Automaton

5.1 Part (a): Rule 30 Implementation

Rule 30 is an elementary cellular automaton where each cell’s next state depends on its current

state and its two neighbors:

Conﬁguration|111 110 101 100 011 010 001 000
New State | O 0 0 1 1 1 1 0

Table 4: Rule 30 transition table (binary: 00011110 = 30 in decimal)

Listing 4: Rule 30 Implementation (src/rule30.rs)

pub struct Rule30 {
state: u32, // 32 cells packed into a single u32
}

impl Rule30 {
pub fn new(seed: u32) -> Self {
// Initialize with seed; if 0, use single bit in center
let initial_state = if seed == 0 { 1 << 16 } else { seed };
Rule30 { state: initial_state }
}

// Apply Rule 30 with periodic boundary conditions
// Uses bitwise operations on all 32 cells simultaneously
fn step (&mut self) {
// For Rule 30: new_cell = left XOR (center OR right)
let left = self.state.rotate_right (1); // Wrap right
let center = self.state;
let right = self.state.rotate_left (1); // Wrap left

// Rule 30: output = left XOR (center OR right)

10

%]

~

NN ONNN NN N
5 2o 2

00

self.state = left ~ (center | right);

)}

impl RandomGenerator for Rule30 {
fn next (&mut self) -> u64 {
self .step(); // Advance one generation
self .state as u64 // Entire 32-bit state IS the number
}

fn modulus (&self) -> u64 {
(u32::MAX as u64) + 1 // 2°32
}

Key Implementation Details:

e 32 cells as specified in the homework, packed into a single u32

e Periodic boundary conditions via rotate_left/right, creating a circular topology
¢ Bitwise operations apply Rule 30 to all 32 cells simultaneously—extremely fast!

e Output method: Each generation, the entire 32-bit state is read as the random number,
. A) —b
matching the homework formula: v =) 7=, s -2

The elegant insight is that Rule 30’s update formula new = left @ (center V right) can be applied
to all 32 cells in parallel using bitwise operations.

5.2 Part (b): Statistical Analysis

Metric Rule 30 Expected

Mean 0.500579 0.5
Std Dev 0.289578 0.288675

Table 5: Rule 30 statistics over 100,000 samples (32-cell implementation)

11

Rule 30 - Histogram

ahe

(a) Histogram

. rmRule 30 3D Scatter

(b) 3D Scatter Plot

Figure 5: Rule 30 analysis showing good statistical properties

5.2.1 Comparison to LCG and LFSR

Rule30 can be extremely fast when implemented on something like a gate array. Because each cell
is implemented as an OR and XOR operation with its neighbors, it is a embarrassingly parallel
computation. Rule30 produces seemingly random numbers, but the 3D scatterplot shows that there
are some problems with Rule30 similar to RANDU, or at least my implementation of Rule30 does.
There is not even coverage of the space.

6 Summary and Conclusions

Listed is a summary of the performance of each PRNG.

Generator Mean Std Dev 3D Structure

Notes

Good LCG 0.500
RANDU 0.502
Xorshift32 0.500
PCG32 0.498
Rule 30 0.501

0.288
0.288
0.289
0.289
0.290

Uniform
15 planes!
Uniform
Uniform
Uniform

Simple, fast
Catastrophically flawed
Fast, good quality
Modern, excellent quality
Fast (bitwise on u32)

Table 6: Summary comparison of all implemented PRNGs

12

28
29
30
31

o U s W

~

A Complete Code Listings

A.1 lib.rs — Main Library with Trait Definition

// Module declarations
mod lcg;

mod lfsr;

mod pcg;

mod rule30;

// Re-ezport all PRNG types
pub use 1lcg::Lcg;

pub use lfsr::Lfsr;

pub use pcg::Pcg32;

pub use rule30::Rule30;

// Tratt that all PRNGs wtill implement
pub trait RandomGenerator {
/// Generate the mnext random integer
fn next (&mut self) -> u64;

/// Return the modulus (range) of the generator
fn modulus (&self) -> u64;

// Default implementations that all PRNGs get for free!
/// Generate a untform random number in [0, 1)
fn next_uniform(&mut self) -> f64 {
self .next() as £f64 / self.modulus() as f64
}

/// Generate n samples as a vector

fn generate_samples (&mut self, n: u64) -> Vec<f64> {
(0..n) .map(|_| self.next_uniform()).collect ()

}

A.2 lcg.rs — Linear Congruential Generator

use crate::RandomGenerator;

// Linear Congruential Generator
pub struct Lcg {
state: u64,

a: u64, // multiplier
c: u64, // increment
m: u64, // modulus
}
impl Lcg {
pub fn new(seed: u64, a: u64, c: u64, m: u64) -> Self {
Lecg {

state: seed,

13

}

// Implement the RandomGenerator trait for LCG
impl RandomGenerator for Lcg {
fn next (&mut self) -> u64 {
self .state = (self.a.wrapping_mul(self.state).wrapping_add(self.c)
) % self.m;
self.state
X

fn modulus (&self) -> u64 {
self.m

}

A.3 Ifsr.rs — Linear Feedback Shift Register

use crate::RandomGenerator;

// Linear Feedback Shift Register
// This timplementation only REALLY HAS SUPPORT FOR 32 BIT NUMBERS!!
//
pub struct Lfsr {
state: u32,

a: u32,
b: u32,
c: u32,
m: u32,

}

impl Lfsr {
pub fn new(seed: u32, a: u32, b: u32, c: u32, m: u32) -> Self {

Lfsr {
state: seed,
a,
b,
C,
m,

3

5| // Implement the RandomGenerator trait for LCG
| impl RandomGenerator for Lfsr {

fn next (&mut self) -> u64 {
self.state = self.state ~ (self.state << self.a);
self.state self.state -~ (self.state >> self.b);
self .state self.state -~ (self.state << self.c);

14

32
33

36
37
38

ot

10
11
12
13

15
16
17
18

20
21
22
23
24

26

27
28
29
30
31

33
34

self.state as u64

}

fn modulus (&self) -> u64 {
self.m as u64

}

A.4 pcg.rs — Permuted Congruential Generator

use crate::RandomGenerator;

// DAS COMMENT:

// The prompt for creating this code was verbatim: Okay, now problem 3 1is
an interesting pro AI

// take. The prompt for problem 3 4is "Write code to implement PCG32 in my
favorite programming

// language (Rust!)" Please do similar statistics and procedures as LFSR
and LCG.

//

// For your context, previous RNGs have had a little help for me to
understand how traits work in

// Rust, but the implementations are almost entirely mine. This was
generated using a Claude Code

// sesstion with Sonnet 4.5.

// PCG32 - Permuted Congruential Generator
// A modern, high-quality PRNG with exzcellent statistical properties
// Uses a 64-bit LCG internally with output permutation
pub struct Pcg32 {
state: u64, // Internal LCG state (64-bit)
increment: u64, // Must be odd
}

impl Pcg32 {
// Standard PCG32 parameters
const MULTIPLIER: u64 = 6364136223846793005;
const DEFAULT_INCREMENT: u64 = 1442695040888963407;

pub fn new(seed: u64) -> Self {
// DAS - Any new instance of Pcg immediately runs through the
new_with_increment function
Pcg32::new_with_increment (seed, Self::DEFAULT_INCREMENT)
b

pub fn new_with_increment (seed: u64, increment: u64) -> Self {
let mut pcg = Pcg32 {
state: O,
increment: (increment << 1) | 1, // Ensure increment s odd
// DAS - I did NOT tell

claude to do this. It
basically copied the prose
entirely on

15

36

37
38
39
40
41
42
43

44

71

72

73
74

76
77

};

//
//
/7
/7

Initialize state properly

DAS -
technically skipping step 3.
seed, and then stepping
(steps 4 and 5 only).
going to let it rock and
we’ll see what happens.

//
//

pcg.state =
pcg.step () ;

pcg
}

// Internal LCG step

Thts 1s that first LCG step.
It’s just adding the wvalue to the

For the purpose of AI authorship,

// it’s own, and Rust’s
syntax 1s almost exactly
the same as written. Thzis
shtfts the

whole 4ncrement ome bit
left, and ensures the 2.
pow (0) bit <s always true
(aka, 1,

// and always odd).

//

Claude here I think s

I’m

pcg.state.wrapping_add(seed) ;

fn step (&mut self) {
// DAS - This ts a basic LCG implementation.
self .state = self
.state
.wrapping_mul (Self::MULTIPLIER)
.wrapping_add(self.increment) ;
}

// PCG output permutation: XSH-RR (zorshift high,

fn output(state: u64) -> u32 {
// XOR high and low parts
let xorshifted = (((state >> 18) -~

let rot = (state >> 59) as u32;

/7
//
//

Random rotation

DAS - DGC,
homework. You say "Return
(zorshifted >> rot)”,
‘rotate’ the number? At
least, that’s what Claude s
rotate_right () instead.
xorshifted.rotate_right (rot)

/7

//

3

impl RandomGenerator for Pcg32 {

16

random rotation)

state) >> 27) as u32;

I think your implementation of thts is wrong in the
but wouldn’t that pad zeros and not truly

tntuiting here by using

78

79
80
81
82
83

84

86
87

88

89
90
91
92
93

94

21
22
23

24
25
26

27

//DAS - This ts implemenating the trait for this specific module. Man,
I love Rust.

fn next (&mut self) -> u64 {
let old_state = self.state;

self .step();

//DAS - Techincally we’ve been fudging things as u32. We mneed to
go back to w64 for all our

//nice traits to work with the plotting functions and statistics
in the main script.

Self::output(old_state) as u64

//DAS - This does ezactly as first described in the HW. Save the
old state, advance the

//state, permute on the old state and output the permuted old
state.

}

fn modulus (&self) -> u64 {
u32::MAX as u64
}

A.5 rule30.rs — Rule 30 Cellular Automaton

use crate::RandomGenerator;

// Rule 30 Cellular Automaton
// Elementary cellular automaton discovered by Stephen Wolfram
// Uses 32 cells with periodic boundary conditions
// Each generation, the entire 32-cell state %s read as a 32-bit number
pub struct Rule30 {
state: u32, // 32 cells packed into a single u32
b

impl Rule30 {
pub fn new(seed: u32) -> Self {
// Initialize with the seed as the inittal state
// If seed is 0, use a single 1 bit tn the center (bit 16)
let initial_state = if seed == 0 { 1 << 16 } else { seed };

Rule30 {
state: initial_state,

}

// Apply Rule 30 for one gemeration with periodic boundary conditions
// This operates on all 32 cells simultaneously wusing bitwise
operations
fn step (&mut self) {
// For Rule 30: mnew_cell = left XOR (center OR rTight)
// With periodic boundaries:
// - left meighbor of bit 0 is bit 31

17

// - Tight neighbor of bit 31 is bit 0

let left = self.state.rotate_right (1); // Shift right with wrap
let center = self.state;
let right = self.state.rotate_left (1); // Shift left with wrap

// Rule 30: output = left XOR (center OR right)
self.state = left ~ (center | right);
}

// Convert state to wuniform [0, 1) using the formula from homework:
// uw = sum(s_b * 2°(-b)) for b = 1 to 32
fn state_to_uniform(&self) -> f64 {

// This ts equtvalent to state / 2°32

self.state as f64 / (u32::MAX as f64 + 1.0)

}

| impl RandomGenerator for Rule30 {

fn next (&mut self) -> u64 {
// Advance one generation
self .step () ;
// Return the entire 32-bit state as the random number
self.state as u64

3

fn modulus (&self) -> u64 {
// The state ranges from 0 to 2°32 - 1
(u32::MAX as u64) + 1

A.6 probleml.rs — LCG Analysis Program

use statrs::statistics::{Data, Distributionl};
use solutions::{RandomGenerator, Lcgl;
use plotters::prelude::*;

fn plot_histogram/(
samples: &[f64],
filename: &str,
title: &str,
bins: usize,
) -> Result<(), Box<dyn std::error::Error>> {
// Create histogram bins

let mut counts = vec![0u32; bins];

for &sample in samples {
let bin = ((sample * bins as f64).floor() as usize) .min(bins - 1);
counts [bin] += 1;

}

let max_count = *counts.iter () .max().unwrap() as £f64;

18

// Set up the drawing area

let root = BitMapBackend::new(filename, (800,
OF

root.fill (&WHITE) 7;

let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))
.margin (10)
.x_label_area_size (40)
.y_label_area_size (50)

600)) .into_drawing_area

.build_cartesian_2d4(0.0..1.0, 0.0..(max_count * 1.1))7;

chart
.configure_mesh ()
.x_desc("Value")
.y_desc("Count")
.draw () ?;

// Draw histogram bars
chart.draw_series (
counts.iter () .enumerate () .map(| (i, &count)
let xO0 = i as f64 / bins as f64;
let x1 = (i + 1) as f64 / bins as f64;
Rectangle::new([(x0, 0.0), (x1, count
filled ())
B,

)7,

root.present () 7;
println!("Histogram saved to: {}", filename) ;
0k (())

}

fn plot_3d_scatter(
samples: &[f64],
filename: &str,
title: &str,
max_points: usize,

i|) -> Result<(), Box<dyn std::error::Error>> {

// Create triplets from consecutive samples
let triplets: Vec<(f64, f64, f64)> = samples
.windows (3)
.step_by (1)
.take (max_points)
.map (lw| (w[0], w[1], w([2]))
.collect ();

// Set up the drawing area

let root = BitMapBackend::new(filename, (1024,
s

root.fill (&WHITE) 7;

let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))

19

I {

as f64)], BLUE.mix (0.6).

768)) .into_drawing_area

71 .margin (10)
72 .build_cartesian_34(0.0..1.0, 0.0..1.0, 0.0..1.0)7;

74 // Rotate the wiew to better see planar structure
75 chart.with_projection (|mut pbl| {

76 pb.pitch = 0.8; // Tilt up/down

77 pb.yaw = 0.5; // Rotate left/right

78 pb.scale = 0.9;

79 pb.into_matrix ()

80)

81

82 chart.configure_axes () .draw()7;

83

84 // Draw the points

85 chart.draw_series(

86 triplets

87 .iter ()

88 .map(l&(x, y, z)| Circle::new((x, y, 2z), 2, BLUE.filled())),
89)75

90

91 root.present () 7;

92 println! ("Plot saved to: {}", filename);

93 0k ()

04| }

95

o6 fn main () A{

97 let monsanto = 1; // repeatable seed

98 //

99 // Problem 1: Linear Congruential Generator
100 // Part a

101

102 let mut garbage_lcg = Lcg::new(monsanto, 7, 1737753, 1 << 31);
103 println! ("PROBLEM 1:");

104 println!("__________ D) g

105 println! ("Part a)");

106

107 for i in 0..5 {

108 println! ("Random Number {}: {}", i, garbage_lcg.next_uniform())

109 }

110

111 println! ("Part B)");

112 let mut good_lcg = Lcg::new(monsanto, 1_.664_525, 1_.013_.904_223, 1 <<
31);

113 let mut randu = Lcg::new(monsanto, 65_539, 0, 1 << 31); // RANDU: a
=65539, c=0, m=2"31

115 let n = 2 << 13;

117 let good_lcg_samples = good_lcg.generate_samples(n);

118 let randu_samples = randu.generate_samples(n);

119

120 let good_lcg_data = Data::new(good_lcg_samples.clone());
121 let randu_data = Data::new(randu_samples.clone());

20

139

140

145

146

164
165
166

167| }

println!("Good LCG Mean: {:6}", good_lcg_data.mean().unwrap());
println! ("RANDU Mean: {:6}", randu_data.mean().unwrap());

println!("Good LCG STD Dev: {:6}", good_lcg_data.std_dev () .unwrap());
println! ("RANDU STD Dev: {:6}", randu_data.std_dev().unwrap());

// Generate histograms
println! ("\nGenerating histograms...");
plot_histogram(&good_lcg_samples, "good_lcg_histogram.png", "Good LCG
- Histogram", 50)
.expect ("Failed to create Good LCG histogram");

plot_histogram(&randu_samples, "randu_histogram.png", "RANDU -
Histogram", 50)
.expect ("Failed to create RANDU histogram");

// Generate fresh samples for 3D plotting

println! ("\nGenerating 3D scatter plots...");

let good_lcg_samples = good_lcg.generate_samples (30000);
let randu_samples = randu.generate_samples (30000);

// Create 3D scatter plots with more points

plot_3d_scatter (&good_lcg_samples, "good_lcg_3d.png", "Good LCG - 3D
Scatter", 10000)
.expect ("Failed to create Good LCG plot");

plot_3d_scatter (&randu_samples, "randu_3d.png", "RANDU - 3D Scatter (
Shows Planar Structure)", 10000)
.expect ("Failed to create RANDU plot");

// Vertfy RANDU planar structure mathematically
// For RANDU: z_{n+2} = 6*z_{n+1} - 9*z_n (mod 2°31)
println!("\nVerifying RANDU planar structure:");
let test_triplets: Vec<(u64, u64, u64)> = {

let mut test_randu = Lcg::new(monsanto, 65_539, 0, 1 << 31);

let samples: Vec<u64> = (0..100) .map(|l_| test_randu.next()).

collect () ;

samples.windows (3) .map(|lw| (w[0], w[1], w[2])).take(10).collect ()

};

let m = 1u64 << 31;
for (i, &(x0, x1, x2)) in test_triplets.iter () .enumerate () {
let expected = (6 * x1 + m - (9 * x0) % m) % m;
let matches = x2 == expected;
if i < 3 { // Show first 3
println! (" Triplet {}: x2={}, 6*x1-9%x0 (mod 2-31)={}, Match:
{r",

i, x2, expected, matches);

21

A.7 problem2.rs — LFSR Analysis Program

use statrs::statistics::{Data, Distribution};
use solutions::{RandomGenerator, Lfsr};
use plotters::prelude::*;

fn plot_histogram(
samples: &[f64],
filename: &str,
title: &str,
bins: usize,
) -> Result<(), Box<dyn std::error::Error>> {
// Create histogram bins

let mut counts = vec![0u32; bins];

for &sample in samples {
let bin = ((sample * bins as f64).floor() as usize).min(bins -
counts [bin] += 1;

}

let max_count = *counts.iter () .max () .unwrap() as £f64;

// Set up the drawing area

let root = BitMapBackend::new(filename, (800, 600)).into_drawing_area

O
root.fill (&WHITE) ?7;

let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))
.margin (10)
.x_label_area_size (40)
.y_label_area_size (50)
.build_cartesian_2d(0.0..1.0, 0.0..(max_count * 1.1))7;

chart
.configure_mesh ()
.x_desc("Value")
.y_desc ("Count")
.draw () ?7;

// Draw histogram bars
chart.draw_series (
counts.iter () .enumerate () .map (| (i, &count)| {
let xO = i as f64 / bins as f64;
let x1 = (i + 1) as f64 / bins as f64;

Rectangle::new([(x0, 0.0), (x1, count as f64)], BLUE.mix (0.6).

filled ())
»,

)7,

root.present () 7;
println! ("Histogram saved to: {}", filename);

0k ()

22

90

91

92

94

95

96

98

99

100

102

103

fn plot_3d_scatter(
samples: &[f64],
filename: &str,
title: &str,
max_points: usize,

) -> Result<(), Box<dyn std::error::Error>> {
// Create triplets from consecutive samples
let triplets: Vec<(f64, f64, f64)> = samples

.windows (3)

.step_by (1)

.take (max_points)

.map (lwl (w[0], wl1l, w[2]))
.collect ();

// Set up the drawing area

let root = BitMapBackend::new(filename, (1024, 768)).into_drawing_area

O
root.fill (&WHITE) 7;

let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))
.margin (10)
.build_cartesian_3d4(0.0..1.0, 0.0..1.0,

// BRotate the wiew to better see structure
chart.with_projection (|mut pbl| {

pb.pitch = 0.8;
pb.yaw = 0.5;
pb.scale = 0.9;

pb.into_matrix ()

P
chart.configure_axes () .draw()7;

// Draw the points
chart.draw_series(
triplets
.iter O
.map (1&(x, y, z)| Circle::new((x, y,
)73

root.present () 7;
println!("Plot saved to: {}", filename);
0k ()

}

fn main() {
println! ("PROBLEM 2: LFSR (Xorshift)");
println! ("===========================")

// LFSR parameters: a=13, b=17, c=5
let seed = 1;

let a = 13;

let b 17;

23

0.0..1.0)7;

z), 2, BLUE.filled())),

1

3

let ¢ = 5;

let m = u32::MAX; // Mazimum value for u32
let mut 1lfsr = Lfsr::new(seed, a, b, c, m);
println!("Parameters: a={}, b={}, c={}, m=2"32-1", a, b, c);
println!("Seed: {}\n", seed);
// Generate first few samples to show output
println! ("First 5 random numbers:");
for i in 0..5 {
println! (" Random Number {}: {:.10}", i, lfsr.next_uniform());
}
// Generate large number of samples for stattistics
let n = 100_000;
println!("\nGenerating {} samples for analysis...", n);
let samples = 1lfsr.generate_samples(n);
let data = Data::new(samples.clone());
// Calculate statistics
let mean = data.mean () .unwrap();
let std_dev = data.std_dev().unwrap();
println! ("\nStatistics:");
println! (" Mean: {:.6} (expected: 0.5)", mean);
println! (" Std Dev: {:.6} (expected: {:.6})", std_dev, (1.0/12.0_£f64)
.sqrt O));
// Generate histogram
println! ("\nGenerating histogram...");
plot_histogram(&samples, "lfsr_histogram.png", "LFSR (Xorshift) -
Histogram", 50)
.expect ("Failed to create histogram");
// Generate 3D scatter plot
println! ("Generating 3D scatter plot...");
let plot_samples = 1lfsr.generate_samples (30000) ;
plot_3d_scatter (&plot_samples, "lfsr_3d.png", "LFSR (Xorshift) - 3D
Scatter", 10000)
.expect ("Failed to create 3D scatter plot");
println! ("\nDone! Check the generated PNG files.");
}

A.8 problem3.rs - PCG32 Analysis Program

use statrs::statistics::{Data, Distribution};
use solutions::{RandomGenerator, Pcg32};
use plotters::prelude::*;

fn plot_histogram(

24

6
7
8
9
10])
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
12
13
44
45
16
17
18
20|
50
;
52
53
54
55
56()
.

samples: &[f64],
filename: &str,
title: &str,
bins: usize,
-> Result<(), Box<dyn std::error::Error>> {
// Create histogram bins

let mut counts = vec![0u32; bins];

for &sample in samples {
let bin = ((sample * bins as f64).floor() as usize).min(bins - 1);
counts [bin] += 1;

}

let max_count = *counts.iter () .max().unwrap() as f64;

// Set up the drawing area

let root = BitMapBackend::new(filename, (800, 600)).into_drawing_area
O3

root.fill (&WHITE) 7;

let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))
.margin (10)
.x_label_area_size (40)
.y_label_area_size (50)
.build_cartesian_2d(0.0..1.0, 0.0..(max_count * 1.1))7;

chart
.configure_mesh ()
.x_desc("Value")
.y_desc("Count")
.draw () ?7;

// Draw htistogram bars
chart.draw_series (
counts.iter () .enumerate () .map (| (i, &count)| {
let x0 = i as f64 / bins as f64;
let x1 = (i + 1) as f64 / bins as f64;
Rectangle::new([(x0, 0.0), (x1, count as f64)], BLUE.mix (0.6) .
filled())
B,

)75

root.present () 7;
println!("Histogram saved to: {}", filename);

0k ()

si|fn plot_3d_scatter (

samples: &[f64],
filename: &str,
title: &str,
max_points: usize,
-> Result<(), Box<dyn std::error::Error>> {
// Create triplets from consecutive samples

25

90
91
92
93

94

96
97
98

99

100

}

let triplets: Vec<(f64, f64, f64)> = samples
.windows (3)
.step_by (1)
.take (max_points)
.map (lw| (w[0], w([1], w([2]))
.collect () ;

// Set up the drawing area

let root = BitMapBackend::new(filename, (1024, 768)).into_drawing_area
O

root.fill (&WHITE) 7;

let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))
.margin (10)
.build_cartesian_34(0.0..1.0, 0.0..1.0, 0.0..1.0)7;

// Rotate the wview
chart.with_projection (|mut pbl| {
pb.pitch = 0.8;
pb.yaw = 0.5;
pb.scale = 0.9;
pb.into_matrix ()

1)
chart.configure_axes () .draw () 7?;

// Draw the points
chart.draw_series (
triplets
.iter ()
.map(l&(x, y, z)| Circle::new((x, y, z), 2, BLUE.filled())),
)T

root.present () 7;
println! ("Plot saved to: {}", filename);
0k (())

fn main() {

println! ("PROBLEM 3: PCG32 (Permuted Congruential Generator)");

println!("==:::::::=========:::::::==========================");

println! ("PCG32 is a modern PRNG with excellent statistical properties
")

println! ("It uses a 64-bit LCG internally with output permutation (XSH
-RR) .\n");

let seed = 42; // Classic seed choice!
let mut pcg = Pcg32::new(seed);

println!("Seed: {}\n", seed);

// Generate first few samples to show output
println!("First 5 random numbers:");

26

109 for i in 0..5 {
110 println! (" Random Number {}: {:.10}", i, pcg.next_uniform());

111 }

112

113 // Generate large number of samples for statistics

114 let n = 100_000;

115 println!("\nGenerating {} samples for analysis...", n);
116

117 let samples = pcg.generate_samples(n);

118 let data = Data::new(samples.clone());

120 // Calculate statistics

121 let mean = data.mean().unwrap();

122 let std_dev = data.std_dev () .unwrap();

123

124 println!("\nStatistics:");

125 println! (" Mean: {:.6} (expected: 0.5)", mean);

126 println! (" Std Dev: {:.6} (expected: {:.6})", std_dev, (1.0/12.0_£f64)
.sqrt) ;

127

128 // Generate histogram

129 println! ("\nGenerating histogram...");

130 plot_histogram(&samples, "pcg32_histogram.png", "PCG32 - Histogram",
50)

131 .expect ("Failed to create histogram");

132

133 // Generate 3D scatter plot

134 println!("Generating 3D scatter plot...");

135 let plot_samples = pcg.generate_samples (30000) ;

136 plot_3d_scatter (&plot_samples, "pcg32_3d.png", "PCG32 - 3D Scatter",
10000)

137 .expect ("Failed to create 3D scatter plot");

139 println! ("\nDone! Check the generated PNG files.");

140 println! ("\nNote: PCG32 should show excellent uniformity and no
visible");

141 println!("correlation patterns in the 3D plot - much better than basic
LCGs!");

A.9 problem4.rs — Rule 30 Analysis Program

use statrs::statistics::{Data, Distribution};
use solutions::{RandomGenerator, Rule30};
3luse plotters::prelude::*;

[

5| fn plot_histogram(

6 samples: &[f64],

7 filename: &str,

8 title: &str,

9 bins: usize,

10/) -> Result<(), Box<dyn std::error::Error>> {
11 // Create histogram bins

27

60

61

62

63

3

let mut counts = vec![0u32; bins];

for &sample in samples {
let bin = ((sample * bins as f64).floor() as usize).min(bins - 1);
counts [bin] += 1;

let max_count = *counts.iter () .max().unwrap() as f64;

// Set up the drawing area

let root = BitMapBackend::new(filename, (800, 600)).into_drawing_area
O

root.fill (&WHITE) 7;

let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))
.margin (10)
.x_label_area_size (40)
.y_label_area_size (50)
.build_cartesian_2d(0.0..1.0, 0.0..(max_count * 1.1))7;

chart
.configure_mesh ()
.x_desc("Value")
.y_desc("Count")
.draw () ?7;

// Draw htistogram bars
chart.draw_series (
counts.iter () .enumerate () .map(| (i, &count)| {
let x0 = i as f64 / bins as f64;
let x1 = (i + 1) as f64 / bins as f64;
Rectangle::new([(x0, 0.0), (x1, count as £f64)], BLUE.mix(0.6).
filled ())
B,

)75

root.present () 7;
println!("Histogram saved to: {}", filename);

0k ()

fn plot_3d_scatter(

3|)

samples: &[f64],
filename: &str,
title: &str,
max_points: usize,

-> Result<(), Box<dyn std::error::Error>> {
// Create triplets from consecutive samples
let triplets: Vec<(f64, f64, f64)> = samples

.windows (3)

.step_by (1)

.take (max_points)

.map (lwl (w[0], wl1], w[2]))
.collect () ;

28

88
89
90
91
92
93

94

96
97
98

99

107
108
109
110
111
112
113

// Set up the drawing area

let root = BitMapBackend::new(filename, (1024, 768)).into_drawing_area
O
root.fill (&WHITE) ?7;
let mut chart = ChartBuilder::on(&root)
.caption(title, ("sans-serif", 30))
.margin (10)
.build_cartesian_34(0.0..1.0, 0.0..1.0, 0.0..1.0)7;

// Rotate the wview
chart.with_projection (|mut pbl| {
pb. 0.8;
pb.
pb.
pb. 1
3

chart.configure_axes () .draw () 7;

// Draw the points
chart.draw_series(
triplets
.iter ()
.map (1&(x, y, z)I|

Circle::new((x, 7y,

)7,

root.present () 7;
println!("Plot saved to:
0k (())

{3,

filename) ;
}

fn main() {
println! ("PROBLEM 4:
println! ("
println!("Rule 30 is an elementary cellular
Stephen Wolfram.");

println!("Uses 32 cells with periodic boundaries;

32-bit random number.\n");

let seed 42u32;
let mut rule3O

Rule30::new(seed) ;

{}", seed);
32 (packed as u32)\n");

println! ("Seed:
println!("Cells:

// Generate first few samples to show output

println!("First 5 random numbers:");

for i in 0..5 {
println! ("

Random Number {}: {:.10}", i

3

// Gemnerate

29

z), 2, BLUE.filled ())),

Rule 30 Cellular Automaton");

automaton discovered by

each state IS the

, rule30.next_uniform());

large number of samples for statistics

128
129
130

131

139
140

141

142

143| }

let n = 100_000;
println!("\nGenerating {} samples for analysis...", n);

let samples = rule30.generate_samples(n);
let data = Data::new(samples.clone());

// Calculate statistics
let mean = data.mean().unwrap();

let std_dev = data.std_dev().unwrap();

println!("\nStatistics:");

println! (" Mean: {:.6} (expected: 0.5)", mean);

println! (" Std Dev: {:.6} (expected: {:.6})", std_dev, (1.0/12.0_£64)
.sqrt) ;

// Generate histogram

println!("\nGenerating histogram...");

plot_histogram(&samples, "rule30_histogram.png", "Rule 30 - Histogram"
, 50)

.expect ("Failed to create histogram");

// Generate 3D scatter plot

println!("Generating 3D scatter plot...");

let plot_samples = rule30.generate_samples (30000);

plot_3d_scatter (&plot_samples, "rule30_3d.png", "Rule 30 - 3D Scatter"
, 10000)
.expect ("Failed to create 3D scatter plot");

println!("\nDone! Check the generated PNG files.");

println! ("\nNote: This implementation uses bitwise operations on a u32
, making it very fast!");

println! ("Rule 30 exhibits chaotic behavior - Wolfram used it in
Mathematica’s PRNG.");

30

	Preamble: Implementation in Rust
	Why Rust?
	Code Architecture
	The RandomGenerator Trait
	Key Rust Syntax for Non-Rustaceans

	Problem 1: Linear Congruential Generator
	Part (a): LCG Implementation
	Part (b): Good LCG vs RANDU Comparison
	Statistical Results
	Histograms
	3D Scatter Plots
	Analysis

	Problem 2: Linear Feedback Shift Register (Xorshift32)
	Part (a): Xorshift32 Implementation
	Part (b): Statistical Analysis
	Comparison to LCG

	Problem 3: Permuted Congruential Generator (PCG32)
	Part (a): AI-Generated Code with Annotations
	Understanding PCG32
	Statistical Results

	Problem 4: Rule 30 Cellular Automaton
	Part (a): Rule 30 Implementation
	Part (b): Statistical Analysis
	Comparison to LCG and LFSR

	Summary and Conclusions
	Complete Code Listings
	lib.rs – Main Library with Trait Definition
	lcg.rs – Linear Congruential Generator
	lfsr.rs – Linear Feedback Shift Register
	pcg.rs – Permuted Congruential Generator
	rule30.rs – Rule 30 Cellular Automaton
	problem1.rs – LCG Analysis Program
	problem2.rs – LFSR Analysis Program
	problem3.rs – PCG32 Analysis Program
	problem4.rs – Rule 30 Analysis Program

