
Homework 1: Random Number Generators
ME 2243 Bayesian Signal Processing

Dane Sabo

January 21, 2026

AI Use Statement

This homework was completed with the assistance of Claude Code (Anthropic’s CLI tool for
Claude), using the Claude Opus 4.5 model.

How AI Was Used

• Learning Rust: Claude helped explain Rust concepts like traits, ownership, and idiomatic
patterns as I implemented the PRNGs. The explanations helped me understand why certain
approaches are preferred in Rust.

• Debugging: When code didn’t compile or produced unexpected results (e.g., RANDU not
showing planar structure, Rule 30 statistics collapsing), Claude helped diagnose issues and
explain the underlying causes.

• Plotting Code: Claude wrote the plotters library boilerplate for generating histograms
and 3D scatter plots, allowing me to focus on the PRNG algorithms themselves.

• PCG32 Implementation: As specified in Problem 3, Claude generated the PCG32 code
from a prompt. I then annotated the code with my own comments explaining each section.

• LaTeX Report: Claude helped structure this report, filled in a lot of the fluff including code
formatting and organization.

• Mathematical Verification: Claude suggested the mathematical verification of RANDU’s
planar constraint, demonstrating that xn+2 ≡ 6xn+1 − 9xn (mod 231) holds for all triplets.

What I Did Myself

• Implemented the LCG, LFSR (Xorshift), and Rule 30 algorithms based on the homework
specifications

• Designed the code architecture (trait-based polymorphism)

• Annotated the PCG32 code with my own understanding

• All analysis sections in this report

1

1 Preamble: Implementation in Rust

This homework was implemented in Rust, a systems programming language known for its memory
safety, performance, and expressive type system. While the homework could have been completed
in Python or MATLAB, I chose Rust as an opportunity to deepen my understanding of both the
language and the underlying algorithms.

1.1 Why Rust?

Rust offers several advantages for implementing PRNGs:

• Performance: Rust compiles to native code, making bit operations and loops extremely fast

• Type Safety: The compiler catches many errors at compile time

• Explicit Integer Types: Rust has explicit u32, u64 types, making bit-width considerations
clear

• No Hidden Overflow: Rust requires explicit handling of integer overflow via wrapping_mul,
wrapping_add, etc.

1.2 Code Architecture

The code is organized as a Rust library with separate binary executables for each problem:

src/
lib.rs -- Trait definition and module exports
lcg.rs -- Linear Congruential Generator
lfsr.rs -- Linear Feedback Shift Register (Xorshift)
pcg.rs -- Permuted Congruential Generator
rule30.rs -- Rule 30 Cellular Automaton
bin/

problem1.rs -- LCG analysis and comparison
problem2.rs -- LFSR analysis
problem3.rs -- PCG32 analysis
problem4.rs -- Rule 30 analysis

1.3 The RandomGenerator Trait

A key feature of Rust is traits, which define shared behavior across types (similar to interfaces in
other languages). All PRNGs implement a common trait:

1 pub trait RandomGenerator {
2 /// Generate the next random integer
3 fn next(&mut self) -> u64;
4

5 /// Return the modulus (range) of the generator
6 fn modulus (&self) -> u64;
7

8 // Default implementations provided for free:
9 fn next_uniform (&mut self) -> f64 {

10 self.next() as f64 / self.modulus () as f64

2

11 }
12

13 fn generate_samples (&mut self , n: u64) -> Vec <f64 > {
14 (0..n).map(|_| self.next_uniform ()).collect ()
15 }
16 }

This means each PRNG only needs to implement next() and modulus(), and automatically re-
ceives next_uniform() and generate_samples() for free. This is Rust’s approach to polymorphism—
composition over inheritance.

1.4 Key Rust Syntax for Non-Rustaceans

For readers unfamiliar with Rust:

• let mut x = 5; – Declare a mutable variable

• &self – Borrow (read-only reference to) self

• &mut self – Mutable borrow of self

• x.wrapping_mul(y) – Multiply with wraparound on overflow

• x « n – Left bit shift by n positions

• x » n – Right bit shift by n positions

• x ˆ y – XOR operation

• Vec<f64> – A dynamic array (vector) of 64-bit floats

• impl Trait for Type – Implement a trait for a specific type

2 Problem 1: Linear Congruential Generator

2.1 Part (a): LCG Implementation

The Linear Congruential Generator follows the recurrence relation:

xn = (a · xn−1 + c) mod m (1)
un = xn/m (2)

Listing 1: LCG Implementation (src/lcg.rs)
1 pub struct Lcg {
2 state: u64 ,
3 a: u64 , // multiplier
4 c: u64 , // increment
5 m: u64 , // modulus
6 }
7

8 impl Lcg {
9 pub fn new(seed: u64 , a: u64 , c: u64 , m: u64) -> Self {

10 Lcg { state: seed , a, c, m }

3

11 }
12 }
13

14 impl RandomGenerator for Lcg {
15 fn next(&mut self) -> u64 {
16 self.state = (self.a.wrapping_mul(self.state)
17 .wrapping_add(self.c)) % self.m;
18 self.state
19 }
20

21 fn modulus (&self) -> u64 {
22 self.m
23 }
24 }

The wrapping_mul and wrapping_add functions handle potential integer overflow by wrapping
around, which is the correct behavior for modular arithmetic.

2.2 Part (b): Good LCG vs RANDU Comparison

Two LCGs were compared:

• Good LCG: a = 1664525, c = 1013904223, m = 231

• RANDU: a = 65539, c = 0, m = 231

2.2.1 Statistical Results

Metric Good LCG RANDU

Mean 0.500304 0.502041
Std Dev 0.287667 0.287818
Expected Mean 0.5 0.5
Expected Std Dev 0.288675 0.288675

Table 1: Statistical comparison of Good LCG and RANDU over 16,384 samples

Both generators produce statistics very close to the expected values for a uniform distribution on
[0, 1). The expected standard deviation is

√
1/12 ≈ 0.2887.

4

2.2.2 Histograms

(a) Good LCG (b) RANDU

Figure 1: Histograms of Good LCG and RANDU. Both appear uniformly distributed.

2.2.3 3D Scatter Plots

(a) Good LCG – uniform fill (b) RANDU – visible planar structure

Figure 2: 3D scatter plots of consecutive triplets (un, un+1, un+2)

2.2.4 Analysis

RANDU’s failing is immediately clear from the 3D scatter plots. In the 3D plot, it’s visible that
RANDU generates random numbers with a higher-order connection. Any triplet of RANDU num-
bers will lie on one of 15 planes in the unit-cube. The consequence of this is that when RANDU is
used for random number generation in tuples rather than single values, the tuples themselves are
not truly random.

Mathematical Verification (Claude Aside): During development, the AI assistant suggested
a mathematical verification of RANDU’s planar structure. Every triplet of consecutive RANDU

5

values satisfies the linear constraint:

xn+2 ≡ 6 · xn+1 − 9 · xn (mod 231)

This was verified programmatically:

Triplet 0: x2=1769499, 6*x1-9*x0 (mod 2^31)=1769499, Match: true
Triplet 1: x2=7077969, 6*x1-9*x0 (mod 2^31)=7077969, Match: true
Triplet 2: x2=26542323, 6*x1-9*x0 (mod 2^31)=26542323, Match: true

This algebraic constraint means that knowing any two consecutive values completely determines
the third, which is why the points lie on planes defined by this linear equation.

3 Problem 2: Linear Feedback Shift Register (Xorshift32)

3.1 Part (a): Xorshift32 Implementation

The Xorshift32 algorithm uses XOR and bit shift operations to generate pseudo-random numbers:

x← x⊕ (x≪ a) (3)
x← x⊕ (x≫ b) (4)
x← x⊕ (x≪ c) (5)

with parameters a = 13, b = 17, c = 5.

Listing 2: LFSR/Xorshift Implementation (src/lfsr.rs)
1 pub struct Lfsr {
2 state: u32 ,
3 a: u32 ,
4 b: u32 ,
5 c: u32 ,
6 m: u32 ,
7 }
8

9 impl RandomGenerator for Lfsr {
10 fn next(&mut self) -> u64 {
11 self.state = self.state ^ (self.state << self.a);
12 self.state = self.state ^ (self.state >> self.b);
13 self.state = self.state ^ (self.state << self.c);
14 self.state as u64
15 }
16

17 fn modulus (&self) -> u64 {
18 self.m as u64
19 }
20 }

The three XOR-shift operations create complex bit mixing. Each operation combines the state
with a shifted version of itself, creating pseudo-random patterns from deterministic operations.

6

3.2 Part (b): Statistical Analysis

Metric Xorshift32 Expected

Mean 0.499617 0.5
Std Dev 0.288751 0.288675

Table 2: Xorshift32 statistics over 100,000 samples

(a) Histogram (b) 3D Scatter Plot

Figure 3: Xorshift32 analysis showing uniform distribution and no visible correlation structure

3.2.1 Comparison to LCG

LFSR produces an indistinguishable result to the LCG random number generator with no clear
bias. That being said, LFSR produced these random numbers significantly faster than the LCG
generator.

4 Problem 3: Permuted Congruential Generator (PCG32)

4.1 Part (a): AI-Generated Code with Annotations

Per the homework instructions, the following code was generated using Claude Code with the
prompt: “Write code to implement PCG32 in my favorite programming language (Rust!)”

The annotations (comments starting with // DAS) are my own explanations of what each part
of the code does.

Listing 3: PCG32 Implementation with Annotations (src/pcg.rs)
1 // DAS COMMENT:
2 // The prompt for creating this code was verbatim: "Write code to
3 // implement PCG32 in my favorite programming language (Rust!)"
4 // This was generated using a Claude Code session.
5

6 pub struct Pcg32 {
7 state: u64 , // Internal LCG state (64-bit)

7

8 increment: u64 , // Must be odd
9 }

10

11 impl Pcg32 {
12 // Standard PCG32 parameters
13 const MULTIPLIER: u64 = 6364136223846793005;
14 const DEFAULT_INCREMENT: u64 = 1442695040888963407;
15

16 pub fn new(seed: u64) -> Self {
17 // DAS - Any new instance immediately runs through
18 // new_with_increment with default increment
19 Pcg32 :: new_with_increment(seed , Self:: DEFAULT_INCREMENT)
20 }
21

22 pub fn new_with_increment(seed: u64 , increment: u64) -> Self {
23 let mut pcg = Pcg32 {
24 state: 0,
25 increment: (increment << 1) | 1,
26 // DAS - Ensures increment is always odd by:
27 // 1. Shifting left by 1 (multiplies by 2, making LSB=0)
28 // 2. OR with 1 (sets LSB=1, guaranteeing odd)
29 };
30

31 // DAS - This is the initialization sequence.
32 // Claude skipped step 3 from the homework (the first LCG step
33 // before adding seed). It adds seed to state , then steps.
34 pcg.state = pcg.state.wrapping_add(seed);
35 pcg.step();
36

37 pcg
38 }
39

40 fn step(&mut self) {
41 // DAS - This is a standard LCG step:
42 // state = state * multiplier + increment
43 self.state = self.state
44 .wrapping_mul(Self:: MULTIPLIER)
45 .wrapping_add(self.increment);
46 }
47

48 fn output(state: u64) -> u32 {
49 // XOR high and low parts
50 let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
51 let rot = (state >> 59) as u32;
52

53 // DAS - The homework says "Return (xorshifted >> rot)" but
54 // that would pad zeros , not truly rotate. Claude correctly
55 // uses rotate_right () for a proper bit rotation.
56 xorshifted.rotate_right(rot)
57 }
58 }
59

60 impl RandomGenerator for Pcg32 {
61 fn next(&mut self) -> u64 {

8

62 let old_state = self.state;
63 self.step();
64 // DAS - This matches the homework exactly:
65 // 1. Save old state
66 // 2. Advance state (LCG step)
67 // 3. Output permutation of OLD state
68 Self:: output(old_state) as u64
69 }
70

71 fn modulus (&self) -> u64 {
72 u32::MAX as u64
73 }
74 }

4.2 Understanding PCG32

PCG32 combines two concepts:

1. LCG for state advancement: The internal 64-bit state advances using a standard LCG
with a carefully chosen multiplier. This provides the period (264) and determines the sequence.

2. Output permutation (XSH-RR): The output is derived by applying a permutation func-
tion to the state:

• XSH (Xorshift High): ((state » 18) ˆ state) » 27 mixes the high bits with the low
bits

• RR (Random Rotation): The result is rotated by an amount determined by the high 5
bits of the state

The key insight is that while the LCG state has predictable low bits (they cycle with small
periods), the permutation function extracts randomness from the high-quality high bits while using
the state itself to determine how to scramble the output.

4.3 Statistical Results

Metric PCG32 Expected

Mean 0.498255 0.5
Std Dev 0.288584 0.288675

Table 3: PCG32 statistics over 100,000 samples

9

(a) Histogram (b) 3D Scatter Plot

Figure 4: PCG32 analysis showing excellent statistical properties (<- Claude is proud of itself)

5 Problem 4: Rule 30 Cellular Automaton

5.1 Part (a): Rule 30 Implementation

Rule 30 is an elementary cellular automaton where each cell’s next state depends on its current
state and its two neighbors:

Configuration 111 110 101 100 011 010 001 000
New State 0 0 0 1 1 1 1 0

Table 4: Rule 30 transition table (binary: 00011110 = 30 in decimal)

Listing 4: Rule 30 Implementation (src/rule30.rs)
1 pub struct Rule30 {
2 state: u32 , // 32 cells packed into a single u32
3 }
4

5 impl Rule30 {
6 pub fn new(seed: u32) -> Self {
7 // Initialize with seed; if 0, use single bit in center
8 let initial_state = if seed == 0 { 1 << 16 } else { seed };
9 Rule30 { state: initial_state }

10 }
11

12 // Apply Rule 30 with periodic boundary conditions
13 // Uses bitwise operations on all 32 cells simultaneously
14 fn step(&mut self) {
15 // For Rule 30: new_cell = left XOR (center OR right)
16 let left = self.state.rotate_right (1); // Wrap right
17 let center = self.state;
18 let right = self.state.rotate_left (1); // Wrap left
19

20 // Rule 30: output = left XOR (center OR right)

10

21 self.state = left ^ (center | right);
22 }
23 }
24

25 impl RandomGenerator for Rule30 {
26 fn next(&mut self) -> u64 {
27 self.step(); // Advance one generation
28 self.state as u64 // Entire 32-bit state IS the number
29 }
30

31 fn modulus (&self) -> u64 {
32 (u32::MAX as u64) + 1 // 2^32
33 }
34 }

Key Implementation Details:

• 32 cells as specified in the homework, packed into a single u32

• Periodic boundary conditions via rotate_left/right, creating a circular topology

• Bitwise operations apply Rule 30 to all 32 cells simultaneously—extremely fast!

• Output method: Each generation, the entire 32-bit state is read as the random number,
matching the homework formula: u =

∑32
b=1 sb · 2−b

The elegant insight is that Rule 30’s update formula new = left⊕ (center∨ right) can be applied
to all 32 cells in parallel using bitwise operations.

5.2 Part (b): Statistical Analysis

Metric Rule 30 Expected

Mean 0.500579 0.5
Std Dev 0.289578 0.288675

Table 5: Rule 30 statistics over 100,000 samples (32-cell implementation)

11

(a) Histogram (b) 3D Scatter Plot

Figure 5: Rule 30 analysis showing good statistical properties

5.2.1 Comparison to LCG and LFSR

Rule30 can be extremely fast when implemented on something like a gate array. Because each cell
is implemented as an OR and XOR operation with its neighbors, it is a embarrassingly parallel
computation. Rule30 produces seemingly random numbers, but the 3D scatterplot shows that there
are some problems with Rule30 similar to RANDU, or at least my implementation of Rule30 does.
There is not even coverage of the space.

6 Summary and Conclusions

Listed is a summary of the performance of each PRNG.

Generator Mean Std Dev 3D Structure Notes

Good LCG 0.500 0.288 Uniform Simple, fast
RANDU 0.502 0.288 15 planes! Catastrophically flawed
Xorshift32 0.500 0.289 Uniform Fast, good quality
PCG32 0.498 0.289 Uniform Modern, excellent quality
Rule 30 0.501 0.290 Uniform Fast (bitwise on u32)

Table 6: Summary comparison of all implemented PRNGs

12

A Complete Code Listings

A.1 lib.rs – Main Library with Trait Definition

1 // Module declarations
2 mod lcg;
3 mod lfsr;
4 mod pcg;
5 mod rule30;
6

7 // Re-export all PRNG types
8 pub use lcg::Lcg;
9 pub use lfsr::Lfsr;

10 pub use pcg:: Pcg32;
11 pub use rule30 :: Rule30;
12

13 // Trait that all PRNGs will implement
14 pub trait RandomGenerator {
15 /// Generate the next random integer
16 fn next(&mut self) -> u64;
17

18 /// Return the modulus (range) of the generator
19 fn modulus (&self) -> u64;
20

21 // Default implementations that all PRNGs get for free!
22 /// Generate a uniform random number in [0, 1)
23 fn next_uniform (&mut self) -> f64 {
24 self.next() as f64 / self.modulus () as f64
25 }
26

27 /// Generate n samples as a vector
28 fn generate_samples (&mut self , n: u64) -> Vec <f64 > {
29 (0..n).map(|_| self.next_uniform ()).collect ()
30 }
31 }

A.2 lcg.rs – Linear Congruential Generator

1 use crate:: RandomGenerator;
2

3 // Linear Congruential Generator
4 pub struct Lcg {
5 state: u64 ,
6 a: u64 , // multiplier
7 c: u64 , // increment
8 m: u64 , // modulus
9 }

10

11 impl Lcg {
12 pub fn new(seed: u64 , a: u64 , c: u64 , m: u64) -> Self {
13 Lcg {
14 state: seed ,

13

15 a,
16 c,
17 m,
18 }
19 }
20 }
21

22 // Implement the RandomGenerator trait for LCG
23 impl RandomGenerator for Lcg {
24 fn next(&mut self) -> u64 {
25 self.state = (self.a.wrapping_mul(self.state).wrapping_add(self.c)

) % self.m;
26 self.state
27 }
28

29 fn modulus (&self) -> u64 {
30 self.m
31 }
32 }

A.3 lfsr.rs – Linear Feedback Shift Register

1 use crate:: RandomGenerator;
2

3 // Linear Feedback Shift Register
4 // This implementation only REALLY HAS SUPPORT FOR 32 BIT NUMBERS !!
5 //
6 pub struct Lfsr {
7 state: u32 ,
8 a: u32 ,
9 b: u32 ,

10 c: u32 ,
11 m: u32 ,
12 }
13

14 impl Lfsr {
15 pub fn new(seed: u32 , a: u32 , b: u32 , c: u32 , m: u32) -> Self {
16 Lfsr {
17 state: seed ,
18 a,
19 b,
20 c,
21 m,
22 }
23 }
24 }
25

26 // Implement the RandomGenerator trait for LCG
27 impl RandomGenerator for Lfsr {
28 fn next(&mut self) -> u64 {
29 self.state = self.state ^ (self.state << self.a);
30 self.state = self.state ^ (self.state >> self.b);
31 self.state = self.state ^ (self.state << self.c);

14

32 self.state as u64
33 }
34

35 fn modulus (&self) -> u64 {
36 self.m as u64
37 }
38 }

A.4 pcg.rs – Permuted Congruential Generator

1 use crate:: RandomGenerator;
2

3 // DAS COMMENT:
4 // The prompt for creating this code was verbatim: Okay , now problem 3 is

an interesting pro AI
5 // take. The prompt for problem 3 is "Write code to implement PCG32 in my

favorite programming
6 // language (Rust!)" Please do similar statistics and procedures as LFSR

and LCG.
7 //
8 // For your context , previous RNGs have had a little help for me to

understand how traits work in
9 // Rust , but the implementations are almost entirely mine. This was

generated using a Claude Code
10 // session with Sonnet 4.5.
11

12 // PCG32 - Permuted Congruential Generator
13 // A modern , high -quality PRNG with excellent statistical properties
14 // Uses a 64-bit LCG internally with output permutation
15 pub struct Pcg32 {
16 state: u64 , // Internal LCG state (64-bit)
17 increment: u64 , // Must be odd
18 }
19

20 impl Pcg32 {
21 // Standard PCG32 parameters
22 const MULTIPLIER: u64 = 6364136223846793005;
23 const DEFAULT_INCREMENT: u64 = 1442695040888963407;
24

25 pub fn new(seed: u64) -> Self {
26 // DAS - Any new instance of Pcg immediately runs through the

new_with_increment function
27 Pcg32 :: new_with_increment(seed , Self:: DEFAULT_INCREMENT)
28 }
29

30 pub fn new_with_increment(seed: u64 , increment: u64) -> Self {
31 let mut pcg = Pcg32 {
32 state: 0,
33 increment: (increment << 1) | 1, // Ensure increment is odd
34 // DAS - I did NOT tell

claude to do this. It
basically copied the prose
entirely on

15

35 // it ’s own , and Rust ’s
syntax is almost exactly
the same as written. This
shifts the

36 // whole increment one bit
left , and ensures the 2.
pow (0) bit is always true
(aka , 1,

37 // and always odd).
38 };
39

40 // Initialize state properly
41 //
42 // DAS - This is that first LCG step. Claude here I think is
43 // technically skipping step 3. It’s just adding the value to the

seed , and then stepping
44 // (steps 4 and 5 only). For the purpose of AI authorship , I’m

going to let it rock and
45 // we ’ll see what happens.
46

47 pcg.state = pcg.state.wrapping_add(seed);
48 pcg.step();
49

50 pcg
51 }
52

53 // Internal LCG step
54 fn step(&mut self) {
55 // DAS - This is a basic LCG implementation.
56 self.state = self
57 .state
58 .wrapping_mul(Self:: MULTIPLIER)
59 .wrapping_add(self.increment);
60 }
61

62 // PCG output permutation: XSH -RR (xorshift high , random rotation)
63 fn output(state: u64) -> u32 {
64 // XOR high and low parts
65 let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
66 let rot = (state >> 59) as u32;
67

68 // Random rotation
69 //
70 // DAS - DGC , I think your implementation of this is wrong in the

homework. You say "Return
71 // (xorshifted >> rot)", but wouldn ’t that pad zeros and not truly

’rotate ’ the number? At
72 // least , that ’s what Claude is intuiting here by using

rotate_right () instead.
73 xorshifted.rotate_right(rot)
74 }
75 }
76

77 impl RandomGenerator for Pcg32 {

16

78 //DAS - This is implemenating the trait for this specific module. Man ,
I love Rust.

79 fn next(&mut self) -> u64 {
80 let old_state = self.state;
81

82 self.step();
83 //DAS - Techincally we ’ve been fudging things as u32. We need to

go back to u64 for all our
84 //nice traits to work with the plotting functions and statistics

in the main script.
85 Self:: output(old_state) as u64
86

87 //DAS - This does exactly as first described in the HW. Save the
old state , advance the

88 //state , permute on the old state and output the permuted old
state.

89 }
90

91 fn modulus (&self) -> u64 {
92 u32::MAX as u64
93 }
94 }

A.5 rule30.rs – Rule 30 Cellular Automaton

1 use crate:: RandomGenerator;
2

3 // Rule 30 Cellular Automaton
4 // Elementary cellular automaton discovered by Stephen Wolfram
5 // Uses 32 cells with periodic boundary conditions
6 // Each generation , the entire 32-cell state is read as a 32-bit number
7 pub struct Rule30 {
8 state: u32 , // 32 cells packed into a single u32
9 }

10

11 impl Rule30 {
12 pub fn new(seed: u32) -> Self {
13 // Initialize with the seed as the initial state
14 // If seed is 0, use a single 1 bit in the center (bit 16)
15 let initial_state = if seed == 0 { 1 << 16 } else { seed };
16

17 Rule30 {
18 state: initial_state ,
19 }
20 }
21

22 // Apply Rule 30 for one generation with periodic boundary conditions
23 // This operates on all 32 cells simultaneously using bitwise

operations
24 fn step(&mut self) {
25 // For Rule 30: new_cell = left XOR (center OR right)
26 // With periodic boundaries:
27 // - left neighbor of bit 0 is bit 31

17

28 // - right neighbor of bit 31 is bit 0
29

30 let left = self.state.rotate_right (1); // Shift right with wrap
31 let center = self.state;
32 let right = self.state.rotate_left (1); // Shift left with wrap
33

34 // Rule 30: output = left XOR (center OR right)
35 self.state = left ^ (center | right);
36 }
37

38 // Convert state to uniform [0, 1) using the formula from homework:
39 // u = sum(s_b * 2^(-b)) for b = 1 to 32
40 fn state_to_uniform (&self) -> f64 {
41 // This is equivalent to state / 2^32
42 self.state as f64 / (u32::MAX as f64 + 1.0)
43 }
44 }
45

46 impl RandomGenerator for Rule30 {
47 fn next(&mut self) -> u64 {
48 // Advance one generation
49 self.step();
50 // Return the entire 32-bit state as the random number
51 self.state as u64
52 }
53

54 fn modulus (&self) -> u64 {
55 // The state ranges from 0 to 2^32 - 1
56 (u32::MAX as u64) + 1
57 }
58 }

A.6 problem1.rs – LCG Analysis Program

1 use statrs :: statistics ::{Data , Distribution };
2 use solutions ::{ RandomGenerator , Lcg};
3 use plotters :: prelude ::*;
4

5 fn plot_histogram(
6 samples: &[f64],
7 filename: &str ,
8 title: &str ,
9 bins: usize ,

10) -> Result <(), Box <dyn std:: error::Error >> {
11 // Create histogram bins
12 let mut counts = vec ![0 u32; bins];
13 for &sample in samples {
14 let bin = ((sample * bins as f64).floor() as usize).min(bins - 1);
15 counts[bin] += 1;
16 }
17

18 let max_count = *counts.iter().max().unwrap () as f64;
19

18

20 // Set up the drawing area
21 let root = BitMapBackend ::new(filename , (800, 600)).into_drawing_area

();
22 root.fill(&WHITE)?;
23

24 let mut chart = ChartBuilder ::on(&root)
25 .caption(title , ("sans -serif", 30))
26 .margin (10)
27 .x_label_area_size (40)
28 .y_label_area_size (50)
29 .build_cartesian_2d (0.0..1.0 , 0.0..(max_count * 1.1))?;
30

31 chart
32 .configure_mesh ()
33 .x_desc("Value")
34 .y_desc("Count")
35 .draw()?;
36

37 // Draw histogram bars
38 chart.draw_series(
39 counts.iter().enumerate ().map(|(i, &count)| {
40 let x0 = i as f64 / bins as f64;
41 let x1 = (i + 1) as f64 / bins as f64;
42 Rectangle ::new([(x0 , 0.0), (x1, count as f64)], BLUE.mix (0.6).

filled ())
43 }),
44)?;
45

46 root.present ()?;
47 println !("Histogram saved to: {}", filename);
48 Ok(())
49 }
50

51 fn plot_3d_scatter(
52 samples: &[f64],
53 filename: &str ,
54 title: &str ,
55 max_points: usize ,
56) -> Result <(), Box <dyn std:: error::Error >> {
57 // Create triplets from consecutive samples
58 let triplets: Vec <(f64 , f64 , f64)> = samples
59 .windows (3)
60 .step_by (1)
61 .take(max_points)
62 .map(|w| (w[0], w[1], w[2]))
63 .collect ();
64

65 // Set up the drawing area
66 let root = BitMapBackend ::new(filename , (1024, 768)).into_drawing_area

();
67 root.fill(&WHITE)?;
68

69 let mut chart = ChartBuilder ::on(&root)
70 .caption(title , ("sans -serif", 30))

19

71 .margin (10)
72 .build_cartesian_3d (0.0..1.0 , 0.0..1.0 , 0.0..1.0) ?;
73

74 // Rotate the view to better see planar structure
75 chart.with_projection (|mut pb| {
76 pb.pitch = 0.8; // Tilt up/down
77 pb.yaw = 0.5; // Rotate left/right
78 pb.scale = 0.9;
79 pb.into_matrix ()
80 });
81

82 chart.configure_axes ().draw()?;
83

84 // Draw the points
85 chart.draw_series(
86 triplets
87 .iter()
88 .map (|&(x, y, z)| Circle ::new((x, y, z), 2, BLUE.filled ())),
89)?;
90

91 root.present ()?;
92 println !("Plot saved to: {}", filename);
93 Ok(())
94 }
95

96 fn main() {
97 let monsanto = 1; // repeatable seed
98 //
99 // Problem 1: Linear Congruential Generator

100 // Part a
101

102 let mut garbage_lcg = Lcg::new(monsanto , 7, 1737753 , 1 << 31);
103 println !("PROBLEM 1:");
104 println !("__________");
105 println !("Part a)");
106

107 for i in 0..5 {
108 println !("Random Number {}: {}", i, garbage_lcg.next_uniform ())
109 }
110

111 println !("Part B)");
112 let mut good_lcg = Lcg::new(monsanto , 1_664_525 , 1_013_904_223 , 1 <<

31);
113 let mut randu = Lcg::new(monsanto , 65_539 , 0, 1 << 31); // RANDU: a

=65539 , c=0, m=2^31
114

115 let n = 2 << 13;
116

117 let good_lcg_samples = good_lcg.generate_samples(n);
118 let randu_samples = randu.generate_samples(n);
119

120 let good_lcg_data = Data::new(good_lcg_samples.clone ());
121 let randu_data = Data::new(randu_samples.clone());
122

20

123 println !("Good LCG Mean: {:6}", good_lcg_data.mean().unwrap ());
124 println !("RANDU Mean: {:6}", randu_data.mean().unwrap ());
125

126 println !("Good LCG STD Dev: {:6}", good_lcg_data.std_dev ().unwrap ());
127 println !("RANDU STD Dev: {:6}", randu_data.std_dev ().unwrap ());
128

129 // Generate histograms
130 println !("\nGenerating histograms ...");
131 plot_histogram (& good_lcg_samples , "good_lcg_histogram.png", "Good LCG

- Histogram", 50)
132 .expect("Failed to create Good LCG histogram");
133

134 plot_histogram (& randu_samples , "randu_histogram.png", "RANDU -
Histogram", 50)

135 .expect("Failed to create RANDU histogram");
136

137 // Generate fresh samples for 3D plotting
138 println !("\nGenerating 3D scatter plots ...");
139 let good_lcg_samples = good_lcg.generate_samples (30000);
140 let randu_samples = randu.generate_samples (30000);
141

142 // Create 3D scatter plots with more points
143 plot_3d_scatter (& good_lcg_samples , "good_lcg_3d.png", "Good LCG - 3D

Scatter", 10000)
144 .expect("Failed to create Good LCG plot");
145

146 plot_3d_scatter (& randu_samples , "randu_3d.png", "RANDU - 3D Scatter (
Shows Planar Structure)", 10000)

147 .expect("Failed to create RANDU plot");
148

149 // Verify RANDU planar structure mathematically
150 // For RANDU: x_{n+2} ≡ 6*x_{n+1} - 9*x_n (mod 2^31)
151 println !("\nVerifying RANDU planar structure:");
152 let test_triplets: Vec <(u64 , u64 , u64)> = {
153 let mut test_randu = Lcg::new(monsanto , 65_539 , 0, 1 << 31);
154 let samples: Vec <u64 > = (0..100).map(|_| test_randu.next()).

collect ();
155 samples.windows (3).map(|w| (w[0], w[1], w[2])).take (10).collect ()
156 };
157

158 let m = 1u64 << 31;
159 for (i, &(x0, x1 , x2)) in test_triplets.iter().enumerate () {
160 let expected = (6 * x1 + m - (9 * x0) % m) % m;
161 let matches = x2 == expected;
162 if i < 3 { // Show first 3
163 println !(" Triplet {}: x2={}, 6*x1 -9*x0 (mod 2^31)={}, Match:

{}",
164 i, x2, expected , matches);
165 }
166 }
167 }

21

A.7 problem2.rs – LFSR Analysis Program

1 use statrs :: statistics ::{Data , Distribution };
2 use solutions ::{ RandomGenerator , Lfsr};
3 use plotters :: prelude ::*;
4

5 fn plot_histogram(
6 samples: &[f64],
7 filename: &str ,
8 title: &str ,
9 bins: usize ,

10) -> Result <(), Box <dyn std:: error::Error >> {
11 // Create histogram bins
12 let mut counts = vec ![0 u32; bins];
13 for &sample in samples {
14 let bin = ((sample * bins as f64).floor() as usize).min(bins - 1);
15 counts[bin] += 1;
16 }
17

18 let max_count = *counts.iter().max().unwrap () as f64;
19

20 // Set up the drawing area
21 let root = BitMapBackend ::new(filename , (800, 600)).into_drawing_area

();
22 root.fill(&WHITE)?;
23

24 let mut chart = ChartBuilder ::on(&root)
25 .caption(title , ("sans -serif", 30))
26 .margin (10)
27 .x_label_area_size (40)
28 .y_label_area_size (50)
29 .build_cartesian_2d (0.0..1.0 , 0.0..(max_count * 1.1))?;
30

31 chart
32 .configure_mesh ()
33 .x_desc("Value")
34 .y_desc("Count")
35 .draw()?;
36

37 // Draw histogram bars
38 chart.draw_series(
39 counts.iter().enumerate ().map(|(i, &count)| {
40 let x0 = i as f64 / bins as f64;
41 let x1 = (i + 1) as f64 / bins as f64;
42 Rectangle ::new([(x0 , 0.0), (x1, count as f64)], BLUE.mix (0.6).

filled ())
43 }),
44)?;
45

46 root.present ()?;
47 println !("Histogram saved to: {}", filename);
48 Ok(())
49 }
50

22

51 fn plot_3d_scatter(
52 samples: &[f64],
53 filename: &str ,
54 title: &str ,
55 max_points: usize ,
56) -> Result <(), Box <dyn std:: error::Error >> {
57 // Create triplets from consecutive samples
58 let triplets: Vec <(f64 , f64 , f64)> = samples
59 .windows (3)
60 .step_by (1)
61 .take(max_points)
62 .map(|w| (w[0], w[1], w[2]))
63 .collect ();
64

65 // Set up the drawing area
66 let root = BitMapBackend ::new(filename , (1024, 768)).into_drawing_area

();
67 root.fill(&WHITE)?;
68

69 let mut chart = ChartBuilder ::on(&root)
70 .caption(title , ("sans -serif", 30))
71 .margin (10)
72 .build_cartesian_3d (0.0..1.0 , 0.0..1.0 , 0.0..1.0) ?;
73

74 // Rotate the view to better see structure
75 chart.with_projection (|mut pb| {
76 pb.pitch = 0.8;
77 pb.yaw = 0.5;
78 pb.scale = 0.9;
79 pb.into_matrix ()
80 });
81

82 chart.configure_axes ().draw()?;
83

84 // Draw the points
85 chart.draw_series(
86 triplets
87 .iter()
88 .map (|&(x, y, z)| Circle ::new((x, y, z), 2, BLUE.filled ())),
89)?;
90

91 root.present ()?;
92 println !("Plot saved to: {}", filename);
93 Ok(())
94 }
95

96 fn main() {
97 println !("PROBLEM 2: LFSR (Xorshift)");
98 println !("===========================");
99

100 // LFSR parameters: a=13, b=17, c=5
101 let seed = 1;
102 let a = 13;
103 let b = 17;

23

104 let c = 5;
105 let m = u32::MAX; // Maximum value for u32
106

107 let mut lfsr = Lfsr::new(seed , a, b, c, m);
108

109 println !("Parameters: a={}, b={}, c={}, m=2^32 -1", a, b, c);
110 println !("Seed: {}\n", seed);
111

112 // Generate first few samples to show output
113 println !("First 5 random numbers:");
114 for i in 0..5 {
115 println !(" Random Number {}: {:.10}", i, lfsr.next_uniform ());
116 }
117

118 // Generate large number of samples for statistics
119 let n = 100 _000;
120 println !("\nGenerating {} samples for analysis ...", n);
121

122 let samples = lfsr.generate_samples(n);
123 let data = Data::new(samples.clone ());
124

125 // Calculate statistics
126 let mean = data.mean().unwrap ();
127 let std_dev = data.std_dev ().unwrap ();
128

129 println !("\nStatistics:");
130 println !(" Mean: {:.6} (expected: 0.5)", mean);
131 println !(" Std Dev: {:.6} (expected: {:.6})", std_dev , (1.0/12.0 _f64)

.sqrt());
132

133 // Generate histogram
134 println !("\nGenerating histogram ...");
135 plot_histogram (&samples , "lfsr_histogram.png", "LFSR (Xorshift) -

Histogram", 50)
136 .expect("Failed to create histogram");
137

138 // Generate 3D scatter plot
139 println !("Generating 3D scatter plot ...");
140 let plot_samples = lfsr.generate_samples (30000);
141 plot_3d_scatter (& plot_samples , "lfsr_3d.png", "LFSR (Xorshift) - 3D

Scatter", 10000)
142 .expect("Failed to create 3D scatter plot");
143

144 println !("\nDone! Check the generated PNG files.");
145 }

A.8 problem3.rs – PCG32 Analysis Program

1 use statrs :: statistics ::{Data , Distribution };
2 use solutions ::{ RandomGenerator , Pcg32};
3 use plotters :: prelude ::*;
4

5 fn plot_histogram(

24

6 samples: &[f64],
7 filename: &str ,
8 title: &str ,
9 bins: usize ,

10) -> Result <(), Box <dyn std:: error::Error >> {
11 // Create histogram bins
12 let mut counts = vec ![0 u32; bins];
13 for &sample in samples {
14 let bin = ((sample * bins as f64).floor() as usize).min(bins - 1);
15 counts[bin] += 1;
16 }
17

18 let max_count = *counts.iter().max().unwrap () as f64;
19

20 // Set up the drawing area
21 let root = BitMapBackend ::new(filename , (800, 600)).into_drawing_area

();
22 root.fill(&WHITE)?;
23

24 let mut chart = ChartBuilder ::on(&root)
25 .caption(title , ("sans -serif", 30))
26 .margin (10)
27 .x_label_area_size (40)
28 .y_label_area_size (50)
29 .build_cartesian_2d (0.0..1.0 , 0.0..(max_count * 1.1))?;
30

31 chart
32 .configure_mesh ()
33 .x_desc("Value")
34 .y_desc("Count")
35 .draw()?;
36

37 // Draw histogram bars
38 chart.draw_series(
39 counts.iter().enumerate ().map(|(i, &count)| {
40 let x0 = i as f64 / bins as f64;
41 let x1 = (i + 1) as f64 / bins as f64;
42 Rectangle ::new([(x0 , 0.0), (x1, count as f64)], BLUE.mix (0.6).

filled ())
43 }),
44)?;
45

46 root.present ()?;
47 println !("Histogram saved to: {}", filename);
48 Ok(())
49 }
50

51 fn plot_3d_scatter(
52 samples: &[f64],
53 filename: &str ,
54 title: &str ,
55 max_points: usize ,
56) -> Result <(), Box <dyn std:: error::Error >> {
57 // Create triplets from consecutive samples

25

58 let triplets: Vec <(f64 , f64 , f64)> = samples
59 .windows (3)
60 .step_by (1)
61 .take(max_points)
62 .map(|w| (w[0], w[1], w[2]))
63 .collect ();
64

65 // Set up the drawing area
66 let root = BitMapBackend ::new(filename , (1024, 768)).into_drawing_area

();
67 root.fill(&WHITE)?;
68

69 let mut chart = ChartBuilder ::on(&root)
70 .caption(title , ("sans -serif", 30))
71 .margin (10)
72 .build_cartesian_3d (0.0..1.0 , 0.0..1.0 , 0.0..1.0) ?;
73

74 // Rotate the view
75 chart.with_projection (|mut pb| {
76 pb.pitch = 0.8;
77 pb.yaw = 0.5;
78 pb.scale = 0.9;
79 pb.into_matrix ()
80 });
81

82 chart.configure_axes ().draw()?;
83

84 // Draw the points
85 chart.draw_series(
86 triplets
87 .iter()
88 .map (|&(x, y, z)| Circle ::new((x, y, z), 2, BLUE.filled ())),
89)?;
90

91 root.present ()?;
92 println !("Plot saved to: {}", filename);
93 Ok(())
94 }
95

96 fn main() {
97 println !("PROBLEM 3: PCG32 (Permuted Congruential Generator)");
98 println !("===");
99 println !("PCG32 is a modern PRNG with excellent statistical properties

.");
100 println !("It uses a 64-bit LCG internally with output permutation (XSH

-RR).\n");
101

102 let seed = 42; // Classic seed choice!
103 let mut pcg = Pcg32::new(seed);
104

105 println !("Seed: {}\n", seed);
106

107 // Generate first few samples to show output
108 println !("First 5 random numbers:");

26

109 for i in 0..5 {
110 println !(" Random Number {}: {:.10}", i, pcg.next_uniform ());
111 }
112

113 // Generate large number of samples for statistics
114 let n = 100 _000;
115 println !("\nGenerating {} samples for analysis ...", n);
116

117 let samples = pcg.generate_samples(n);
118 let data = Data::new(samples.clone ());
119

120 // Calculate statistics
121 let mean = data.mean().unwrap ();
122 let std_dev = data.std_dev ().unwrap ();
123

124 println !("\nStatistics:");
125 println !(" Mean: {:.6} (expected: 0.5)", mean);
126 println !(" Std Dev: {:.6} (expected: {:.6})", std_dev , (1.0/12.0 _f64)

.sqrt());
127

128 // Generate histogram
129 println !("\nGenerating histogram ...");
130 plot_histogram (&samples , "pcg32_histogram.png", "PCG32 - Histogram",

50)
131 .expect("Failed to create histogram");
132

133 // Generate 3D scatter plot
134 println !("Generating 3D scatter plot ...");
135 let plot_samples = pcg.generate_samples (30000);
136 plot_3d_scatter (& plot_samples , "pcg32_3d.png", "PCG32 - 3D Scatter",

10000)
137 .expect("Failed to create 3D scatter plot");
138

139 println !("\nDone! Check the generated PNG files.");
140 println !("\nNote: PCG32 should show excellent uniformity and no

visible");
141 println !("correlation patterns in the 3D plot - much better than basic

LCGs!");
142 }

A.9 problem4.rs – Rule 30 Analysis Program

1 use statrs :: statistics ::{Data , Distribution };
2 use solutions ::{ RandomGenerator , Rule30 };
3 use plotters :: prelude ::*;
4

5 fn plot_histogram(
6 samples: &[f64],
7 filename: &str ,
8 title: &str ,
9 bins: usize ,

10) -> Result <(), Box <dyn std:: error::Error >> {
11 // Create histogram bins

27

12 let mut counts = vec ![0 u32; bins];
13 for &sample in samples {
14 let bin = ((sample * bins as f64).floor() as usize).min(bins - 1);
15 counts[bin] += 1;
16 }
17

18 let max_count = *counts.iter().max().unwrap () as f64;
19

20 // Set up the drawing area
21 let root = BitMapBackend ::new(filename , (800, 600)).into_drawing_area

();
22 root.fill(&WHITE)?;
23

24 let mut chart = ChartBuilder ::on(&root)
25 .caption(title , ("sans -serif", 30))
26 .margin (10)
27 .x_label_area_size (40)
28 .y_label_area_size (50)
29 .build_cartesian_2d (0.0..1.0 , 0.0..(max_count * 1.1))?;
30

31 chart
32 .configure_mesh ()
33 .x_desc("Value")
34 .y_desc("Count")
35 .draw()?;
36

37 // Draw histogram bars
38 chart.draw_series(
39 counts.iter().enumerate ().map(|(i, &count)| {
40 let x0 = i as f64 / bins as f64;
41 let x1 = (i + 1) as f64 / bins as f64;
42 Rectangle ::new([(x0 , 0.0), (x1, count as f64)], BLUE.mix (0.6).

filled ())
43 }),
44)?;
45

46 root.present ()?;
47 println !("Histogram saved to: {}", filename);
48 Ok(())
49 }
50

51 fn plot_3d_scatter(
52 samples: &[f64],
53 filename: &str ,
54 title: &str ,
55 max_points: usize ,
56) -> Result <(), Box <dyn std:: error::Error >> {
57 // Create triplets from consecutive samples
58 let triplets: Vec <(f64 , f64 , f64)> = samples
59 .windows (3)
60 .step_by (1)
61 .take(max_points)
62 .map(|w| (w[0], w[1], w[2]))
63 .collect ();

28

64

65 // Set up the drawing area
66 let root = BitMapBackend ::new(filename , (1024, 768)).into_drawing_area

();
67 root.fill(&WHITE)?;
68

69 let mut chart = ChartBuilder ::on(&root)
70 .caption(title , ("sans -serif", 30))
71 .margin (10)
72 .build_cartesian_3d (0.0..1.0 , 0.0..1.0 , 0.0..1.0) ?;
73

74 // Rotate the view
75 chart.with_projection (|mut pb| {
76 pb.pitch = 0.8;
77 pb.yaw = 0.5;
78 pb.scale = 0.9;
79 pb.into_matrix ()
80 });
81

82 chart.configure_axes ().draw()?;
83

84 // Draw the points
85 chart.draw_series(
86 triplets
87 .iter()
88 .map (|&(x, y, z)| Circle ::new((x, y, z), 2, BLUE.filled ())),
89)?;
90

91 root.present ()?;
92 println !("Plot saved to: {}", filename);
93 Ok(())
94 }
95

96 fn main() {
97 println !("PROBLEM 4: Rule 30 Cellular Automaton");
98 println !("======================================");
99 println !("Rule 30 is an elementary cellular automaton discovered by

Stephen Wolfram.");
100 println !("Uses 32 cells with periodic boundaries; each state IS the

32-bit random number .\n");
101

102 let seed = 42u32;
103 let mut rule30 = Rule30 ::new(seed);
104

105 println !("Seed: {}", seed);
106 println !("Cells: 32 (packed as u32)\n");
107

108 // Generate first few samples to show output
109 println !("First 5 random numbers:");
110 for i in 0..5 {
111 println !(" Random Number {}: {:.10}", i, rule30.next_uniform ());
112 }
113

114 // Generate large number of samples for statistics

29

115 let n = 100 _000;
116 println !("\nGenerating {} samples for analysis ...", n);
117

118 let samples = rule30.generate_samples(n);
119 let data = Data::new(samples.clone ());
120

121 // Calculate statistics
122 let mean = data.mean().unwrap ();
123 let std_dev = data.std_dev ().unwrap ();
124

125 println !("\nStatistics:");
126 println !(" Mean: {:.6} (expected: 0.5)", mean);
127 println !(" Std Dev: {:.6} (expected: {:.6})", std_dev , (1.0/12.0 _f64)

.sqrt());
128

129 // Generate histogram
130 println !("\nGenerating histogram ...");
131 plot_histogram (&samples , "rule30_histogram.png", "Rule 30 - Histogram"

, 50)
132 .expect("Failed to create histogram");
133

134 // Generate 3D scatter plot
135 println !("Generating 3D scatter plot ...");
136 let plot_samples = rule30.generate_samples (30000);
137 plot_3d_scatter (& plot_samples , "rule30_3d.png", "Rule 30 - 3D Scatter"

, 10000)
138 .expect("Failed to create 3D scatter plot");
139

140 println !("\nDone! Check the generated PNG files.");
141 println !("\nNote: This implementation uses bitwise operations on a u32

, making it very fast!");
142 println !("Rule 30 exhibits chaotic behavior - Wolfram used it in

Mathematica ’s PRNG.");
143 }

30

	Preamble: Implementation in Rust
	Why Rust?
	Code Architecture
	The RandomGenerator Trait
	Key Rust Syntax for Non-Rustaceans

	Problem 1: Linear Congruential Generator
	Part (a): LCG Implementation
	Part (b): Good LCG vs RANDU Comparison
	Statistical Results
	Histograms
	3D Scatter Plots
	Analysis

	Problem 2: Linear Feedback Shift Register (Xorshift32)
	Part (a): Xorshift32 Implementation
	Part (b): Statistical Analysis
	Comparison to LCG

	Problem 3: Permuted Congruential Generator (PCG32)
	Part (a): AI-Generated Code with Annotations
	Understanding PCG32
	Statistical Results

	Problem 4: Rule 30 Cellular Automaton
	Part (a): Rule 30 Implementation
	Part (b): Statistical Analysis
	Comparison to LCG and LFSR

	Summary and Conclusions
	Complete Code Listings
	lib.rs – Main Library with Trait Definition
	lcg.rs – Linear Congruential Generator
	lfsr.rs – Linear Feedback Shift Register
	pcg.rs – Permuted Congruential Generator
	rule30.rs – Rule 30 Cellular Automaton
	problem1.rs – LCG Analysis Program
	problem2.rs – LFSR Analysis Program
	problem3.rs – PCG32 Analysis Program
	problem4.rs – Rule 30 Analysis Program

