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1 Goals and Outcomes
The goal of this research is to develop a unified framework combining temporal logic synthesis
with continuous-time verification methods to create autonomous hybrid control systems with com-
plete correctness guarantees. Hybrid control systems have great potential for autonomous control
applications because they can switch between different control laws based on discrete triggers in
the system’s operating range. This approach allows autonomous controllers to use several tractable
control laws optimized for different regions in the state space, rather than relying on a single con-
troller across the entire operating range. But, the discrete transitions between control laws in
hybrid controllers present significant challenges in proving stability and liveness properties for the
complete system. While tools from control theory can establish properties for individual control
modes, these guarantees do not generalize when mode switching is introduced. Conversely, sig-
nificant advances in formal methods have enabled automatic synthesis of discrete controllers from
temporal logic specifications—tools like Strix can generate provably correct switching logic for
complex logical requirements. However, these synthesis approaches assume instantaneous mode
transitions and operate purely in discrete state spaces. In hybrid systems, transitions occur along
continuous trajectories governed by differential equations, creating a fundamental verification gap
that neither purely discrete synthesis nor traditional control theory can address alone.

This research addresses a fundamental challenge in hybrid controller synthesis and verifica-
tion by unifying discrete system synthesis with continuous system analysis. We will leverage
formal methods to create controllers that are correct-by-construction, enabling guarantees about
the complete system’s behavior. To demonstrate this approach, we will develop an autonomous
controller for nuclear power plant start-up procedures. Nuclear power represents an excellent test
case because the continuous reactor dynamics are well-studied, while the discrete mode switch-
ing requirements are explicitly defined in regulatory procedures and operating guidelines. Current
nuclear reactor control is already a hybrid system. For example, during reactor startup, operators
must transition from initial cold conditions through controlled heating phases to predetermined
power levels. Each phase employs different automated controllers: temperature ramp controllers
during heatup, reactivity controllers approaching criticality, and load-following controllers during
operation. The decision of when to switch between these controllers currently relies on human op-
erators interpreting written procedures. Our approach would formalize such transition conditions
and synthesize the switching logic automatically.

The capability to create high-assurance hybrid control systems has significant potential to re-
duce labor costs in operating critical systems by removing human operators from control loops.
Nuclear power stands to benefit substantially from increased controller autonomy, as operations
and maintenance represent the largest expense for current reactor designs. While emerging tech-
nologies such as microreactors and small modular reactors will reduce maintenance costs through
factory-manufactured replacement components, they face increased per-megawatt operating costs
if required to maintain traditional staffing levels. However, if increased autonomy can be safely
introduced, these economic challenges can be addressed while maintaining safety standards.

If this research is successful, we will achieve the following outcomes:

1. Formalize mode switching requirements as logical specifications that can be synthe-
sized into discrete controller implementations. The discrete transitions between contin-
uous controller modes are often explicitly defined in operating procedures and regulatory
requirements for critical systems. These natural language requirements will be translated
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into temporal logic specifications, which will then be synthesized into provably correct dis-
crete controllers for continuous mode switching.

2. Develop and verify formal characterizations of hybrid mode dynamics and safety con-
ditions. We will establish mathematical frameworks distinguishing transitory modes with
reachability requirements to target states from stabilizing modes with invariant maintenance
properties. For linear dynamics, classical control theory will establish stability and per-
formance within each mode. For nonlinear systems, reachability analysis will verify that
transitory modes drive the system toward intended transitions while maintaining safety con-
straints, and that stabilizing modes preserve their designated operating regions. This unified
approach will enable provable conditions for safe state space traversal and transition timing.

3. Prove that hybrid system implementations achieve safety and performance specifica-
tions across operational mode sequences. By synthesizing discrete controller transitions
from logical specifications using correct-by-construction methods and verifying that con-
tinuous components perform appropriately between discrete transitions, we can establish
mathematical guarantees that the hybrid system maintains safety constraints and meets per-
formance requirements during autonomous operational sequences such as reactor startup
procedures, where multiple control modes must be coordinated to achieve higher-level oper-
ational objectives.

2



2 State of the Art and Limits of Current Practice
This research aims to advance high-assurance autonomous hybrid control systems by bridging
disparate approaches from control theory and computer science. While both fields tackle hybrid
system verification, they approach the problem from fundamentally different perspectives. Con-
trol theory emphasizes performance and stability, while computer science focuses on correctness
through formal verification. This gap represents both the primary challenge and the key opportu-
nity for intellectual contribution.

2.1 Control Theory and Hybrid Systems

Hybrid systems combine continuous dynamics (‘flows’) with discrete transitions (‘jumps’). Fol-
lowing the standard formulation, a hybrid system can be expressed as:

ẋ(t) = f (x(t),q(t),u(t)) (1)
q(k+1) = ν(x(k),q(k),u(k)) (2)

Here, f (·) defines the continuous dynamics while ν(·) governs discrete transitions. The contin-
uous states x, discrete state q, and control input u interact to produce hybrid behavior. The discrete
state q defines the current continuous dynamics mode. The only constraint on ν(·) is avoiding
Zeno behavior—infinite jumps in finite time. Our focus centers on continuous autonomous hybrid
systems, where continuous states remain unchanged during jumps and no external control input
is required. Physical systems naturally exhibit this property—a nuclear reactor switching from
warm-up to load-following control cannot instantaneously change its temperature or rod position.

An intuitive approach to building hybrid controllers is to stitch together multiple simple con-
trollers for different state space regions. This approach creates significant verification challenges.
Even with linear time-invariant modes, global stability cannot be guaranteed using linear control
theory alone. Instead, researchers have developed Lyapunov-based approaches, though finding
appropriate Lyapunov functions remains challenging. Stability conditions for switched linear sys-
tems can provide necessary and sufficient conditions using multiple Lyapunov functions [1], but
these methods require restrictive assumptions. Individual Lyapunov functions must be monoton-
ically nonincreasing at every switching time, which proves impractical for many real systems.
Common Lyapunov functions face even stricter existence conditions, often impossible for systems
with fundamentally different dynamics across modes [2, 3].

LIMITATION: Lyapunov-based methods of ensuring stability are prohibitively challeng-
ing to apply to hybrid control systems. Finding Lyapunov functions to prove stability in the
sense of Lyapunov is not practical for working with hybrid systems. Additional requirements on
the Lyapunov functions makes finding appropriate functions extremely difficult.

Reachability analysis offers an alternative verification approach by computing system output
ranges for given inputs. Unlike Lyapunov methods, reachability extends naturally to nonlinear
systems. Hamilton-Jacobi frameworks established the mathematical foundation for computing
reachable sets in continuous and hybrid systems, enabling formal verification of safety-critical
applications [4].

LIMITATION: Reachability analysis is not scalable to large hybrid systems. Reachability
analysis faces two critical limitations. First, computational complexity grows exponentially with
state dimension—current methods remain limited to 6-8 dimensional systems despite recent algo-
rithmic advances. Second, approximation errors compound over long time horizons, potentially
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rendering analysis meaningless for extended trajectories. Zonotope-based methods suffer accu-
racy degradation when propagating across mode boundaries, while ellipsoidal methods produce
conservative over-approximations that become increasingly pessimistic with each mode transition.

Recent work on using control barrier functions has improved hybrid system verification ef-
forts. Neural network based control barrier function approximations achieve 10-100X speedup
over classical Hamilton-Jacobi methods while maintaining safety guarantees for 7-dimensional
autonomous racing systems [5]. This breakthrough demonstrates that deep neural networks can
approximate Hamilton-Jacobi partial differential equations and enables application to previously
intractable high-dimensional systems, but future work must address the explainability problem for
neural networks to ensure control barrier functions are valid.

2.2 Formal Methods and Reactive Synthesis

Correctness requirements are specified using temporal logic, which captures system behaviors
through temporal relations. Linear Temporal Logic (LTL) provides four fundamental operators:
next (X), eventually (F), globally (G), and until (U). Consider a nuclear reactor SCRAM require-
ment:

Natural language: “If a high temperature alarm triggers, control rods must immediately insert
and remain inserted until operator reset.”

This plain language requirement can be translated into a rigorous logical specification.

LTL specification:

G(HighTemp → X(RodsInserted∧ (¬RodsWithdrawn U OperatorReset))) (3)

Once requirements are translated into these logical specifications, they can be checked using
computational tools. Cyber-physical systems naturally exhibit discrete behavior amenable to for-
mal analysis. Systems with finite states can be modeled as finite state machines, where all possible
states and transitions are explicitly enumerable as logical specifications. This enables exhaustive
verification through model checking—a technique extensively employed in high-assurance digital
systems and safety-critical software. This mathematical framework has been extended to hybrid
automata [6], which established the standard model combining discrete control graphs with con-
tinuous dynamics. Hybrid automata bridge program-analysis techniques to hybrid systems with
infinite state spaces through symbolic model-checking based on reachability analysis [7] but are
not scalable for the same limitations mentioned earlier with other reachability techniques.

NASA’s Formal Requirements Elicitation Tool (FRET) bridges natural language and mathe-
matical specifications through FRETish—a structured English-like language automatically trans-
latable to temporal logic [8]. FRET enables hierarchical requirement organization, realizability
checking for specification conflicts, integration with verification tools like CoCoSim, and runtime
monitoring through their Copilot tool.

From realizable specifications, reactive synthesis tools automatically generate controllers. The
Reactive Synthesis Competition (SYNTCOMP) has driven algorithmic improvements for over a
decade, with tools like Strix dominating recent competitions through efficient parity game solv-
ing [9,10]. Strix is able to translate linear temporal logic specifications into deterministic automata
automatically while maximizing generated automata quality.

LIMITATION: Unexplored application of temporal logic requirements in nuclear con-
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trol. Despite extensive nuclear power documentation and mature reactive synthesis tools, little
work has combined these for nuclear control applications. Nuclear procedures are written in struc-
tured natural language that maps well to temporal logic, yet the synthesis community has not
engaged with this domain. This represents a significant unexplored opportunity where formal
methods could provide immediate practical impact.

Hybrid automata extend finite automata by representing discrete states as control modes with
continuous dynamics. Transitions between nodes indicate discrete state changes through ν(·) ex-
ecution. This provides intuitive graphical representation of mode switching logic. Differential
dynamic logic (dL) expands this idea and offers the most complete logical foundation for hybrid
verification. dL introduced two key modalities [11, 12]:

• Box modality [α]φ : for all executions of hybrid system α , property φ holds
• Diamond modality ⟨α⟩φ : there exists an execution of α where φ holds

These modalities enable direct reasoning about hybrid systems including continuous dynamics.
The KeYmaera X theorem prover implements dL through axiomatic tactical proving, successfully
verifying collision avoidance in train and aircraft control [13].

LIMITATION: There is a high expertise barrier for dL verification, and scalability re-
mains an issue. While dL is expressive enough for any hybrid behavior, verification requires
expertise in differential equations, logical specifications, and sequent calculus. The proof effort
remains challenging even with automated assistance. Users must understand both the mathemati-
cal intricacies of their system and the logical framework, then guide the prover through complex
proof steps. This expertise barrier prevents wider adoption despite the framework’s theoretical
completeness.

The state of the art reveals a field in transition. Traditional boundaries between control theory
and formal methods are dissolving through learning-based approaches and compositional tech-
niques. While fundamental challenges remain—particularly scalability and the theory-practice
gap—the convergence of approaches promises to enable verification and synthesis for systems of
unprecedented complexity. The next section describes how this research will contribute to bridging
these gaps through unified synthesis frameworks applied to nuclear reactor control.
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