vault backup: 2026-01-21 10:59:15
This commit is contained in:
parent
45b4e6b0c1
commit
ebb3714379
@ -91,9 +91,15 @@ if $B = A_i$, $P(A_j|A_i) = 1$ when i = j, 0 otherwise
|
||||
> Bayesian statistics are a way of thinking about a **degree
|
||||
> of belief** in a probability, not an estimation of the
|
||||
> probability from a number of experiments.
|
||||
>
|
||||
> We know:
|
||||
>
|
||||
> $P(AB) = P(A|B)P(B) = P(B|A)P(A)$
|
||||
>
|
||||
> Then Bayes Theorem becomes
|
||||
> $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$
|
||||
> $$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$
|
||||
>
|
||||
> and then when events $A_i$ are mutually exclusive...
|
||||
>
|
||||
> $$P(A_i|B) = \frac{P(B|A_i) P(A_i)}{\sum_i P(B|A_i) P(A_i)}$$
|
||||
>
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user