vault backup: 2026-01-21 10:59:15
This commit is contained in:
parent
45b4e6b0c1
commit
ebb3714379
@ -92,8 +92,14 @@ if $B = A_i$, $P(A_j|A_i) = 1$ when i = j, 0 otherwise
|
|||||||
> of belief** in a probability, not an estimation of the
|
> of belief** in a probability, not an estimation of the
|
||||||
> probability from a number of experiments.
|
> probability from a number of experiments.
|
||||||
>
|
>
|
||||||
|
> We know:
|
||||||
|
>
|
||||||
> $P(AB) = P(A|B)P(B) = P(B|A)P(A)$
|
> $P(AB) = P(A|B)P(B) = P(B|A)P(A)$
|
||||||
>
|
>
|
||||||
> Then Bayes Theorem becomes
|
> Then Bayes Theorem becomes
|
||||||
> $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$
|
> $$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$
|
||||||
|
>
|
||||||
|
> and then when events $A_i$ are mutually exclusive...
|
||||||
|
>
|
||||||
|
> $$P(A_i|B) = \frac{P(B|A_i) P(A_i)}{\sum_i P(B|A_i) P(A_i)}$$
|
||||||
>
|
>
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user