diff --git a/300s School/ME 2016 - Nonlinear Dynamical Systems 1/2024-09-30 Limit Cycles.md b/300s School/ME 2016 - Nonlinear Dynamical Systems 1/2024-09-30 Limit Cycles.md index 5ca21af73..ddff1fb3f 100644 --- a/300s School/ME 2016 - Nonlinear Dynamical Systems 1/2024-09-30 Limit Cycles.md +++ b/300s School/ME 2016 - Nonlinear Dynamical Systems 1/2024-09-30 Limit Cycles.md @@ -62,3 +62,35 @@ Therefore limit cycles are not possible. This is a method covered in the book. Sometimes is used to rule out limit cycles. ### Poincare - Bendixon Theorem. Book! +# Perturbation Methods +- Weakly nonlinear systems +Linear Resonator: +$m \ddot x + b \dot x + kx = f$ +Weakly Nonlinear: +$m \ddot x + b \dot x + kx + \alpha x^3 = f$ +With a bookkeeping term: +$m \ddot x + b \dot x + kx + \epsilon \alpha x^3 = f$ + +## Asymptotic Expansion +$x \neq x(t) \rightarrow x = x(t,\epsilon)$ +$x(t,\epsilon) = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + ... + \text{H.O.T.s}$ +Looking for solutions that are like +$$x(t,\epsilon) ~ \sum_{k=0}^{\inf} x_k(t) \delta_c(\epsilon)$$ +Where $\delta$ is an asymptotically scaling number. This series sometimes doesn't converge but still gives useful information about the solution. +**Example:** +for $x>=0$ +$$\dot x + x - \epsilon x^2 = 0, x(0) = 2$$ +Develop a 3 term approximation using asymptotic expansion: +$$x(t,\epsilon) = x_o(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) + ...$$ +$$\dot x(t,\epsilon) = \dot x_o(t) + \epsilon \dot x_1(t) + \epsilon^2 \dot x_2(t) + ...$$ +Sub into the EOM:, and satisfy initial conditions $x_0(2) = 0; x_1(0) = x_2(0) = 0$ +$$ \dot x_o(t) + \epsilon \dot x_1(t) + \epsilon^2 \dot x_2(t) + x_o(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) - \epsilon (x_o(t) + \epsilon x_1(t) + \epsilon^2 x_2(t))^2 = 0 $$ +Now that last term is going to yield higher order $\epsilon$ terms ($^2, ^4$). We can't get rid of these, we'll need to keep them. +Now collect terms: + +| Power | Expression | +| ----- | ---------- | +| $\epsilon^0$ | $\dot x_0 + x_0 = 0 \rightarrow x_0 = c_1e^{-t} \rightarrow x_0 = 2 e^{-t}$| +| $\epsilon^2$ | $\dot x_1 + x_1 - x_0^2 = 0 \rightarrow \dot x_1 + x_1 - 4 e^{2t} = 0 \rightarrow x_1 = 4(e^{-t} - 2e^{-2t})$ | +| $\epsilon^3$ | $\dot x_2 + x_2 -2(2e^{-t})(4 e^{-t} - e^{-2t}) \rightarrow ...$ | +Then we have an approximate solution for small $\epsilon$. What small means depends on the problem... \ No newline at end of file