import sympy as sm import numpy as np sm.init_printing() s = sm.symbols('s') z = sm.symbols('z') T = sm.symbols('T') ######################################################### print('PROBLEM 2:') print('Part a:') ZOH = (1-sm.exp(-s*T))/(s*T) G_1_s = 1/s*ZOH bilinear_s = 2/T *(z-1)/(z+1) G_1_k = G_1_s.subs({s:bilinear_s}).simplify() print("G_1_k = ") sm.pprint(G_1_k) print('Part b:') theta_s_r_s = ZOH*1/s**2 theta_k_r_k = theta_s_r_s.subs({s:bilinear_s}).simplify() print("theta_k_r_k = ") sm.pprint(theta_k_r_k) ######################################################### print('PROBLEM 3:') A = sm.Matrix([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0]]) B = sm.Matrix([0, 0, 0, 1]) C = sm.Matrix([1, 0, 0, 0]).transpose() D = sm.Matrix([1]) print('System Matricies A, B, C, D') sm.pprint(A) sm.pprint(B) sm.pprint(C) sm.pprint(D) #Recursive Solution k = sm.symbols('k', integer = True, real = True, positive = True) def y(k,u): term_1 = C * A**k * x_0 term_2 = sm.Matrix([0,0,0,0]) for j in range(np.size(u)): term_2 = term_2 + A**(k-j-1) * B * u[j] term_2 = C*term_2 term_3 = D*u[-1] return term_1+term_2+term_3 print('Part c:') x_0 = sm.Matrix([2, 1, 3, 0]) u = sm.Matrix([0]) output = y(k, u) output = output[0].expand().simplify() print('y(k) = ') sm.pprint(output) print('Part d:') x_0 = sm.Matrix([0, 0, 0, 0]) u = sm.Matrix([2, 1, 3, 0]) output = y(k, u) output = output[0].expand().simplify() print('y(k) = ') sm.pprint(output) print('Part e:') print('These are the same exact response between parts C and D. This makes sense, becasue we defined our states as just being delays in a chain. The result is that the input at timestep k trickles down through each state in k+1, k+2, and k+3. This means that our states save our input in a way, s.t. loading this initial state mathematically produces an identical result as loading those inputs in one time step at a time. \n \n This is reflected by the two algebraeic expressions being the same.') ######################################################### print('PROBLEM 4:') print('Part a:') """ x(k+2) - x(k+1) + 0.25 x(k) = u(k+2) Applying Z transform: z^2 X - z X + 0.25 X = z^2 U X (z^2 - z + 0.25) = z^2 U X/U = z^2 / (z^2 - z + 0.25) """ # Use SymPy to do partial frac z = sm.symbols('z') X_U = z**2/(z**2 - z + 0.25) sm.pprint(X_U.apart())