print("Experiment 6.1\n") measured_activity = 5.2e-6 # curies elapsed_time = 193.92 # s sigma_u1 = 35331 # counts background_time = 193.94 # s sigma_b = 558 # counts R = sigma_u1 / elapsed_time - sigma_b / background_time print(f"R: {R:.3e} counts / s") print(f"R: {R/3.7e10*1e6:.3e} microcurie") eps_ip = 0.101 # from figure 6.2 f = 0.6617 d = 100 # mm r = 38 / 2 # mm G = r**2 / 4 / d**2 A = R / eps_ip / G / f print(f"G: {G:.3e}") print(f"A: {A:.3e} decays / s") print(f"A: {A/3.7e10*1e6:.3e} microcurie") A = 4.5 * 3.7e10 / 1e6 eps_ip_est = R / A / G / f print(f"eps_ips: {eps_ip_est:.3e}") sigma_u1 = [10122, 11763, 14464, 17476, 22073, 28268, 38084] sigma_b = 130 d = [100, 90, 80, 70, 60, 50, 40] t = 60 # s import numpy as np n = len(sigma_u1) R = np.empty(n) G = np.empty(n) eps_ip = np.empty(n) for i, value in enumerate(sigma_u1): print(i, value) R[i] = (value - sigma_b) / t G[i] = r**2 / 4 / d[i] ** 2 eps_ip[i] = R[i] / A / G[i] / f print("R") print(R.transpose()) print("G") print(G.transpose()) print("eps_ip") print(eps_ip.transpose()) import matplotlib.pyplot as plt plt.plot(d, eps_ip, ".b") plt.xlabel("Distance [mm]") plt.ylabel("$\epsilon_{ip}$") plt.grid("both") plt.savefig("exercise6_4.png") plt.show()