print("Experiment 6.1\n") measured_activity = 5.2e-6 # curies elapsed_time = 193.92 # s sigma_u1 = 35331 # counts background_time = 193.94 # s sigma_b = 558 # counts R = sigma_u1 / elapsed_time - sigma_b / background_time print(f"R: {R:.3e} counts / s") print(f"R: {R/3.7e10*1e6:.3e} microcurie") eps_ip = 0.101 # from figure 6.2 f = 0.6617 d = 100 # mm r = 38 / 2 # mm G = r**2 / 4 / d**2 A = R / eps_ip / G / f print(f"G: {G:.3e}") print(f"A: {A:.3e} decays / s") print(f"A: {A/3.7e10*1e6:.3e} microcurie") A = 4.5 * 3.7e10 / 1e6 eps_ip_est = R / A / G / f print(f"eps_ips: {eps_ip_est:.3e}") sigma_u1 = [10122, 11763, 14464, 17476, 22073, 28268, 38084] sigma_b = 130 d = [100, 90, 80, 70, 60, 50, 40] t = 60 # s import numpy as np n = len(sigma_u1) R = np.empty(n) G = np.empty(n) eps_ip = np.empty(n) for i, value in enumerate(sigma_u1): print(i, value) R[i] = (value - sigma_b) / t G[i] = r**2 / 4 / d[i] ** 2 eps_ip[i] = R[i] / A / G[i] / f print("R") print(R.transpose()) print("G") print(G.transpose()) print("eps_ip") print(eps_ip.transpose()) import matplotlib.pyplot as plt plt.plot(d, eps_ip, ".b") plt.xlabel("Distance [mm]") plt.ylabel("$\epsilon_{ip}$") plt.grid("both") plt.savefig("exercise6_4.png") # plt.show() print("Experiment 6.3") peak_1 = 234484 # counts peak_2 = 169703 # counts sum_peak = 950 # counts t = 1129.16 # activity = 0.4e-6 # Ci activity = activity * 3.7e10 # disintegrations / second time_to_manufacture = 12 + 1 / 12 # years t_one_half = 5.27 # years ## find decay activity_corrected = activity * np.exp(-np.log(2) / t_one_half * time_to_manufacture) d = 15 # mm r = 38 / 2 # mm G = r**2 / 4 / d**2 f = 1 eps_1 = peak_1 / G / f / activity_corrected / t eps_2 = peak_2 / G / f / activity_corrected / t sum_peak_pred = G**2 * t * activity_corrected * eps_1 * eps_2 print(f"eps_1: {eps_1:.3e}") print(f"eps_2: {eps_2:.3e}") print(f"G: {G:.3e}") print(f"Experimental sum peak: {sum_peak:.3e}") print(f"Predicted sum peak: {sum_peak_pred:.3e}") print(f"Percent error: {(sum_peak_pred-sum_peak)/sum_peak}")