done w midterm nuce 2100

This commit is contained in:
Dane Sabo 2024-10-08 16:13:20 -04:00
parent fb286fdaea
commit a011e2e0d3
2 changed files with 439 additions and 64 deletions

View File

@ -420,10 +420,33 @@
"![Screenshot from 2024-10-07 10-41-57.png](attachment:8e28c362-fbb6-4270-950f-0644c54d7858.png)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6ba0ed78-d681-49d6-a662-9548abd61e22",
"metadata": {},
"outputs": [],
"source": [
"# Part A\n",
"Phi_times_Sigma_f = 3.9e13 #fission/cm^3/s\n",
"E_r = 200 * 1.60218e-13 #J/fission\n",
"a = 40 #cm"
]
},
{
"cell_type": "markdown",
"id": "80ce855c-127a-4cdd-93b8-dddb5531c1e6",
"metadata": {},
"source": [
"$$\\phi(8) = \\frac{P \\pi}{2a E_r \\Sigma_f} \\cos\\left(\\frac{\\pi 8}{40}\\right)$$\n",
"\n",
"$$\\frac{ \\phi(8) \\Sigma_f E_r 2 a}{\\pi \\cos \\left( \\frac{\\pi 8}{40} \\right)} = P$$"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "efab76fa-fbc8-4ea4-9d4f-f5790b0cfeb1",
"id": "24dbc2ce-fcf2-49d8-9a01-044c468bc223",
"metadata": {},
"outputs": [
{
@ -433,21 +456,72 @@
"\n",
"=========FINAL ANSWER=========\n",
"Question 6a:\n",
"1.249700e+03 J\n",
"3.933584e+04 W/cm^2\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"# Part A\n",
"F_dot = 3.9e13 #fission/cm^3/s\n",
"E_r = 200 * 1.60218e-13 #J\n",
"#According to INL: https://mooseframework.inl.gov/bison/theory/power_burnup.html\n",
"P_local = F_dot * E_r\n",
"answer_print('Question 6a', f'{P_local:4e} J')\n",
"P = Phi_times_Sigma_f * E_r * 2 * a / np.pi / np.cos(np.pi*8/40)\n",
"answer_print('Question 6a', f'{P:4e} W/cm^2')"
]
},
{
"cell_type": "markdown",
"id": "f68df535-4c3a-4e1c-a413-98c8154eb041",
"metadata": {},
"source": [
"**Part B**\n",
"$$ \\phi(20) \\Sigma_f = \\frac{P \\pi}{2a E_r} \\cos \\left( \\frac{\\pi}{2} \\right) $$\n",
"$$ \\phi(20) \\Sigma_f = \\frac{P \\pi}{2a E_r} \\times 0 $$\n",
"\n",
"# Part B\n"
"\n",
"========FINAL ANSWER==========\n",
"\n",
"$\\phi(20) \\Sigma_f = 0$\n",
"\n",
"========FINAL ANSWER==========\n"
]
},
{
"cell_type": "markdown",
"id": "dd015a5c-da4d-446d-81a9-67bcff242a1f",
"metadata": {},
"source": [
"**Part C**\n",
"\n",
"$$P(x) = \\phi(x) \\Sigma_f E_r = \\frac{P \\pi}{2a E_r} \\cos \\left( \\frac{\\pi x}{a} \\right) \\times E_r $$\n",
"$$P(x) = \\frac{P \\pi}{2a} \\cos \\left( \\frac{\\pi x}{a} \\right) $$\n",
"\n",
"========FINAL ANSWER==========\n",
"\n",
"$P(x) = \\frac{P \\pi}{2a} \\cos \\left( \\frac{\\pi x}{a} \\right) $\n",
"\n",
"where\n",
"\n",
"$P = 3933.6 \\frac{\\text{W}}{\\text{cm}^2}$\n",
"\n",
"$a = 40 \\text{cm}$\n",
"\n",
"$E_r = 200 \\text{MeV} \\times 1.60218\\times 10^{-13} \\frac{\\text{J}}{\\text{MeV}}$\n",
"\n",
"========FINAL ANSWER=========="
]
},
{
"cell_type": "markdown",
"id": "8166199c-3072-429c-85da-4fd93e06bb11",
"metadata": {},
"source": [
"**Part D**\n",
"\n",
"\n",
"========FINAL ANSWER==========\n",
"\n",
"I should get the value I obtained in Part A!\n",
"\n",
"========FINAL ANSWER=========="
]
},
{
@ -465,7 +539,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 11,
"id": "e669dab3-ef9a-460e-8fbc-9a99bbad623b",
"metadata": {},
"outputs": [
@ -522,7 +596,7 @@
},
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 12,
"id": "f3570a43-0a14-44c4-9237-e3e1f595535d",
"metadata": {},
"outputs": [
@ -535,6 +609,12 @@
"Question 8a:\n",
"The atomic density of Pu239 in this reactor is 3.3757e+22 atoms/cm^3.\n",
"=========FINAL ANSWER=========\n",
"\n",
"\n",
"=========FINAL ANSWER=========\n",
"Question 8b:\n",
"6.940e-02 1/cm^2\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
@ -542,13 +622,83 @@
"source": [
"Pu239_density = 13.4 #g/cm^3\n",
"v = 2.88\n",
"Sigma_f = 1.8 #barns\n",
"Sigma_a = 2.1 #barns\n",
"sigma_f = 1.8e-24 #cm^2\n",
"sigma_a = 2.1e-24 #cm^2\n",
"D = 1.5 #cm\n",
"\n",
"# Part A\n",
"N_Pu239 = 100/100*Pu239_density*6.0221409e23/Pu239_mass\n",
"answer_print('Question 8a', f'The atomic density of Pu239 in this reactor is {N_Pu239:.4e} atoms/cm^3.')\n"
"answer_print('Question 8a', f'The atomic density of Pu239 in this reactor is {N_Pu239:.4e} atoms/cm^3.')\n",
"\n",
"# Part B\n",
"Sigma_f = sigma_f*N_Pu239 #1/cm\n",
"Sigma_a = sigma_a*N_Pu239 #1/cm\n",
"B_m_squared = (v*Sigma_f - Sigma_a)/D \n",
"answer_print('Question 8b', f'{B_m_squared:.3e} 1/cm^2')"
]
},
{
"cell_type": "markdown",
"id": "d1f1ccd1-c3d5-4148-8bdc-98c217239698",
"metadata": {},
"source": [
"**Part C:**\n",
"\n",
"For K = 1, $B_g^2 = B_m^2$:\n",
"$$ \\left( \\frac{\\pi}{R} \\right)^2 = \\frac{v \\Sigma_f - \\Sigma_a}{D} $$\n",
"$$ \\left( \\frac{\\pi}{R} \\right) = \\sqrt{ \\frac{v \\Sigma_f - \\Sigma_a}{D} }$$\n",
"$$ R = \\frac{\\pi} {\\sqrt{ \\frac{v \\Sigma_f - \\Sigma_a}{D} }}$$"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "31086745-dd3a-401a-b4f4-a65b4e6214d0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=========FINAL ANSWER=========\n",
"Question 8c:\n",
"1.192e+01 cm\n",
"=========FINAL ANSWER=========\n",
"\n",
"\n",
"=========FINAL ANSWER=========\n",
"Question 8d:\n",
"9.518e+04 kg\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"R = np.pi/(B_m_squared)**(1/2)\n",
"answer_print('Question 8c', f'{R:.3e} cm')\n",
"\n",
"# Part D\n",
"critical_mass = Pu239_density*(4/3*np.pi*R**3)\n",
"answer_print('Question 8d', f'{critical_mass:.3e} kg')"
]
},
{
"cell_type": "markdown",
"id": "5e3c047b-ada8-4893-b670-00bca9e02741",
"metadata": {},
"source": [
"========FINAL ANSWER==========\n",
"\n",
"**Part E**\n",
"\n",
"If radius decreases:\n",
"1. Mateiral buckling will **stay the same**.\n",
"2. Geometric buckling will **increase**.\n",
"3. Multiplication factor will **decrease**. \n",
"\n",
"========FINAL ANSWER=========="
]
},
{
@ -566,7 +716,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 14,
"id": "c0c96c53-4ef8-4367-9d7c-0d9688aff15d",
"metadata": {},
"outputs": [

View File

@ -220,7 +220,7 @@
{
"cell_type": "code",
"execution_count": 6,
"id": "2f9c5cdb-d0ca-4eb9-9b6f-a1c6617db5d1",
"id": "8321b879-f036-4bf7-a1de-25ae9c496e11",
"metadata": {},
"outputs": [
{
@ -232,20 +232,6 @@
"Question 3a:\n",
"7.06700e-03 amu\n",
"=========FINAL ANSWER=========\n",
"\n",
"\n",
"=========FINAL ANSWER=========\n",
"Question 3b:\n",
"The kinetic energy is 6.58291e+00 MeV. \n",
"This reaction releases energy.\n",
"=========FINAL ANSWER=========\n",
"\n",
"\n",
"=========FINAL ANSWER=========\n",
"Question 3c:\n",
"The difference is significant. Without electrons, the result is 7.60570e+00 MeV. \n",
"There is 15.54% difference between the two answers.\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
@ -261,18 +247,62 @@
"reactants = 1*U238_mass + 1*neutron_mass\n",
"change_in_mass = reactants - products\n",
"\n",
"answer_print('Question 3a', f'{change_in_mass:.5e} amu')\n",
"answer_print('Question 3a', f'{change_in_mass:.5e} amu')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "71567a2c-c14b-45f6-88da-d96d51310c7c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=========FINAL ANSWER=========\n",
"Question 3b:\n",
"The kinetic energy is 6.58291e+00 MeV. \n",
"This reaction releases energy.\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"# Part B\n",
"Q = change_in_mass * 931.5 #MeV\n",
"answer_print('Question 3b', f'The kinetic energy is {Q:.5e} MeV. \\nThis reaction releases energy.')\n",
"answer_print('Question 3b', f'The kinetic energy is {Q:.5e} MeV. \\nThis reaction releases energy.')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "63b91372-56d8-4433-9885-1f06a99d5435",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=========FINAL ANSWER=========\n",
"Question 3c:\n",
"The difference is significant. Without electrons, the result is 7.60570e+00 MeV. \n",
"There is 15.54% difference between the two answers.\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"# Part C\n",
"new_change_in_mass = reactants - 1*Pu239_mass #amu\n",
"new_Q = new_change_in_mass * 931.5 #MeV\n",
"percent_difference = (new_Q - Q)/Q *100\n",
"\n",
"answer_print('Question 3c', f'The difference is significant. Without electrons, the result is {new_Q:.5e} MeV. \\nThere is {percent_difference:.2f}% difference between the two answers.')\n"
"answer_print('Question 3c', f'The difference is significant. Without electrons, the result is {new_Q:.5e} MeV. \\nThere is {percent_difference:.2f}% difference between the two answers.')"
]
},
{
@ -290,7 +320,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 9,
"id": "8d9faf3b-aac3-4a1f-9d07-464ea77d3290",
"metadata": {},
"outputs": [
@ -356,8 +386,8 @@
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2612afc1-e0dc-4078-a792-b83e946af822",
"execution_count": 10,
"id": "b328c58b-948b-4b5d-ae2a-fdd59d77208b",
"metadata": {},
"outputs": [
{
@ -371,12 +401,6 @@
"Beryllium-9 Binding Energy: 8.4417e+03MeV\n",
"Helium-4 Binding Energy: 2.8296e+01MeV\n",
"=========FINAL ANSWER=========\n",
"\n",
"\n",
"=========FINAL ANSWER=========\n",
"Question 5b:\n",
"8.3814e+03 MeV\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
@ -397,14 +421,35 @@
"answer_print('Question 5a',\n",
" f'Lithium-6 Binding Energy: {binding_energy(3, 3, Li6_mass):.4e} MeV\\n'+\n",
" f'Beryllium-9 Binding Energy: {binding_energy(4, 5, Be9_mass):.4e}MeV\\n'+\n",
" f'Helium-4 Binding Energy: {binding_energy(2, 2, He4_mass):.4e}MeV')\n",
" f'Helium-4 Binding Energy: {binding_energy(2, 2, He4_mass):.4e}MeV')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "cc50b7a9-75ce-4095-b0c7-d35fad787c10",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=========FINAL ANSWER=========\n",
"Question 5b:\n",
"8.3814e+03 MeV\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"# Part B\n",
"reactants = binding_energy(3, 3, Li6_mass) + binding_energy(2, 2, He4_mass)\n",
"products = binding_energy(4, 5, Be9_mass)\n",
"Q = products - reactants\n",
"\n",
"answer_print('Question 5b', f'{Q:.4e} MeV')\n"
"answer_print('Question 5b', f'{Q:.4e} MeV')"
]
},
{
@ -422,8 +467,31 @@
},
{
"cell_type": "code",
"execution_count": 10,
"id": "efab76fa-fbc8-4ea4-9d4f-f5790b0cfeb1",
"execution_count": 12,
"id": "6ba0ed78-d681-49d6-a662-9548abd61e22",
"metadata": {},
"outputs": [],
"source": [
"# Part A\n",
"Phi_times_Sigma_f = 3.9e13 #fission/cm^3/s\n",
"E_r = 200 * 1.60218e-13 #J/fission\n",
"a = 40 #cm"
]
},
{
"cell_type": "markdown",
"id": "80ce855c-127a-4cdd-93b8-dddb5531c1e6",
"metadata": {},
"source": [
"$$\\phi(8) = \\frac{P \\pi}{2a E_r \\Sigma_f} \\cos\\left(\\frac{\\pi 8}{40}\\right)$$\n",
"\n",
"$$\\frac{ \\phi(8) \\Sigma_f E_r 2 a}{\\pi \\cos \\left( \\frac{\\pi 8}{40} \\right)} = P$$"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "24dbc2ce-fcf2-49d8-9a01-044c468bc223",
"metadata": {},
"outputs": [
{
@ -433,21 +501,72 @@
"\n",
"=========FINAL ANSWER=========\n",
"Question 6a:\n",
"1.249700e+03 J\n",
"3.933584e+04 W/cm^2\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"# Part A\n",
"F_dot = 3.9e13 #fission/cm^3/s\n",
"E_r = 200 * 1.60218e-13 #J\n",
"#According to INL: https://mooseframework.inl.gov/bison/theory/power_burnup.html\n",
"P_local = F_dot * E_r\n",
"answer_print('Question 6a', f'{P_local:4e} J')\n",
"P = Phi_times_Sigma_f * E_r * 2 * a / np.pi / np.cos(np.pi*8/40)\n",
"answer_print('Question 6a', f'{P:4e} W/cm^2')"
]
},
{
"cell_type": "markdown",
"id": "f68df535-4c3a-4e1c-a413-98c8154eb041",
"metadata": {},
"source": [
"**Part B**\n",
"$$ \\phi(20) \\Sigma_f = \\frac{P \\pi}{2a E_r} \\cos \\left( \\frac{\\pi}{2} \\right) $$\n",
"$$ \\phi(20) \\Sigma_f = \\frac{P \\pi}{2a E_r} \\times 0 $$\n",
"\n",
"# Part B\n"
"\n",
"========FINAL ANSWER==========\n",
"\n",
"$\\phi(20) \\Sigma_f = 0$\n",
"\n",
"========FINAL ANSWER==========\n"
]
},
{
"cell_type": "markdown",
"id": "dd015a5c-da4d-446d-81a9-67bcff242a1f",
"metadata": {},
"source": [
"**Part C**\n",
"\n",
"$$P(x) = \\phi(x) \\Sigma_f E_r = \\frac{P \\pi}{2a E_r} \\cos \\left( \\frac{\\pi x}{a} \\right) \\times E_r $$\n",
"$$P(x) = \\frac{P \\pi}{2a} \\cos \\left( \\frac{\\pi x}{a} \\right) $$\n",
"\n",
"========FINAL ANSWER==========\n",
"\n",
"$P(x) = \\frac{P \\pi}{2a} \\cos \\left( \\frac{\\pi x}{a} \\right)$\n",
"\n",
"where\n",
"\n",
"$P = 3933.6 \\frac{\\text{W}}{\\text{cm}^2}$\n",
"\n",
"$a = 40 \\text{cm}$\n",
"\n",
"$E_r = 200 \\text{MeV} \\times 1.60218\\times 10^{-13} \\frac{\\text{J}}{\\text{MeV}}$\n",
"\n",
"========FINAL ANSWER=========="
]
},
{
"cell_type": "markdown",
"id": "8166199c-3072-429c-85da-4fd93e06bb11",
"metadata": {},
"source": [
"**Part D**\n",
"\n",
"\n",
"========FINAL ANSWER==========\n",
"\n",
"I should get the value I obtained in Part A!\n",
"\n",
"========FINAL ANSWER=========="
]
},
{
@ -465,7 +584,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 14,
"id": "e669dab3-ef9a-460e-8fbc-9a99bbad623b",
"metadata": {},
"outputs": [
@ -522,8 +641,8 @@
},
{
"cell_type": "code",
"execution_count": 29,
"id": "f3570a43-0a14-44c4-9237-e3e1f595535d",
"execution_count": 15,
"id": "3ab2c1cd-b8d0-488a-8e5a-c90e1efddeec",
"metadata": {},
"outputs": [
{
@ -542,13 +661,119 @@
"source": [
"Pu239_density = 13.4 #g/cm^3\n",
"v = 2.88\n",
"Sigma_f = 1.8 #barns\n",
"Sigma_a = 2.1 #barns\n",
"sigma_f = 1.8e-24 #cm^2\n",
"sigma_a = 2.1e-24 #cm^2\n",
"D = 1.5 #cm\n",
"\n",
"# Part A\n",
"N_Pu239 = 100/100*Pu239_density*6.0221409e23/Pu239_mass\n",
"answer_print('Question 8a', f'The atomic density of Pu239 in this reactor is {N_Pu239:.4e} atoms/cm^3.')\n"
"answer_print('Question 8a', f'The atomic density of Pu239 in this reactor is {N_Pu239:.4e} atoms/cm^3.')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "bd9ae0ce-d115-4842-8bb5-b4e049f74fd3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=========FINAL ANSWER=========\n",
"Question 8b:\n",
"6.940e-02 1/cm^2\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"# Part B\n",
"Sigma_f = sigma_f*N_Pu239 #1/cm\n",
"Sigma_a = sigma_a*N_Pu239 #1/cm\n",
"B_m_squared = (v*Sigma_f - Sigma_a)/D \n",
"answer_print('Question 8b', f'{B_m_squared:.3e} 1/cm^2')"
]
},
{
"cell_type": "markdown",
"id": "d1f1ccd1-c3d5-4148-8bdc-98c217239698",
"metadata": {},
"source": [
"**Part C:**\n",
"\n",
"For K = 1, $B_g^2 = B_m^2$:\n",
"$$ \\left( \\frac{\\pi}{R} \\right)^2 = \\frac{v \\Sigma_f - \\Sigma_a}{D} $$\n",
"$$ \\left( \\frac{\\pi}{R} \\right) = \\sqrt{ \\frac{v \\Sigma_f - \\Sigma_a}{D} }$$\n",
"$$ R = \\frac{\\pi} {\\sqrt{ \\frac{v \\Sigma_f - \\Sigma_a}{D} }}$$"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4fd471e0-69f4-42d3-a0d1-0e2c08ac7c4d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=========FINAL ANSWER=========\n",
"Question 8c:\n",
"1.192e+01 cm\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"R = np.pi/(B_m_squared)**(1/2)\n",
"answer_print('Question 8c', f'{R:.3e} cm')"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "fe2be15c-3e0f-45ce-9d4d-183aff3b2754",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"=========FINAL ANSWER=========\n",
"Question 8d:\n",
"9.518e+04 kg\n",
"=========FINAL ANSWER=========\n",
"\n"
]
}
],
"source": [
"# Part D\n",
"critical_mass = Pu239_density*(4/3*np.pi*R**3)\n",
"answer_print('Question 8d', f'{critical_mass:.3e} kg')"
]
},
{
"cell_type": "markdown",
"id": "5e3c047b-ada8-4893-b670-00bca9e02741",
"metadata": {},
"source": [
"**Part E**\n",
"\n",
"========FINAL ANSWER==========\n",
"\n",
"If radius decreases:\n",
"1. Mateiral buckling will **stay the same**.\n",
"2. Geometric buckling will **increase**.\n",
"3. Multiplication factor will **decrease**. \n",
"\n",
"========FINAL ANSWER=========="
]
},
{
@ -566,7 +791,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 19,
"id": "c0c96c53-4ef8-4367-9d7c-0d9688aff15d",
"metadata": {},
"outputs": [