From 2642765d1ea02dcf8557cdc762f94f8e42a53608 Mon Sep 17 00:00:00 2001 From: Dane Sabo Date: Tue, 10 Sep 2024 15:11:19 -0400 Subject: [PATCH] worked on hw2 NUCE 2100 --- .../Untitled-checkpoint.ipynb | 140 ++++++++++++++++++ NUCE_2100/Untitled.ipynb | 140 ++++++++++++++++++ 2 files changed, 280 insertions(+) create mode 100644 NUCE_2100/.ipynb_checkpoints/Untitled-checkpoint.ipynb create mode 100644 NUCE_2100/Untitled.ipynb diff --git a/NUCE_2100/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/NUCE_2100/.ipynb_checkpoints/Untitled-checkpoint.ipynb new file mode 100644 index 0000000..53146bb --- /dev/null +++ b/NUCE_2100/.ipynb_checkpoints/Untitled-checkpoint.ipynb @@ -0,0 +1,140 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "153bfedd-a63f-47f7-be65-4d8c006600e4", + "metadata": {}, + "source": [ + "# Homework 2\n", + "## NUCE 2100\n", + "### Dane Sabo\n", + "\n", + "---\n", + "\n", + "Instructions: Complete the problems below being sure to show your work. If you need to lookup nuclear data from an external source please reference the source in your solutions (once is sufficient).\n", + "\n", + "---\n", + "\n", + "1. Consider the so-called DT (deuterium, tritium) fusion reaction\n", + "\n", + "$^2H + ^3H \\rightarrow ^HHe + ?$\n", + "\n", + "a. What is the missing product in the reaction?\n", + "\n", + " A neutron!\n", + "\n", + "b. Calculate the binding energy of $^2H$, $^{3}H$, and $^{4}He$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "88d5e8eb-f0d6-4397-bcda-98c112bc6bc1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2H Binding Energy: -214638011925356.72 mev\n", + "3H Binding Energy: -818368931224944.4 mev\n", + "4He Binding Energy: -2730116383379421.0 mev\n" + ] + } + ], + "source": [ + "def binding_energy(mass,z,n):\n", + " c = 299792458 # m/s\n", + " h1_mass = 1007825.03190 #micro AMU\n", + " neutron_mass = 1008664.9159 #mirco AMU\n", + "\n", + " return (mass - z*h1_mass - n*neutron_mass)/1e6*c**2\n", + "\n", + "twoH_mass = 2014101.77784 #micro AMU\n", + "print(\"2H Binding Energy:\", binding_energy(twoH_mass,1,1), \"mev\")\n", + "\n", + "threeH_mass = 3016049.281328 #micro AMU\n", + "print(\"3H Binding Energy:\", binding_energy(threeH_mass,1,2), \"mev\")\n", + "\n", + "fourHe_mass = 4002603.25413 #micro AMU\n", + "print(\"4He Binding Energy:\", binding_energy(fourHe_mass,2,2), \"mev\")" + ] + }, + { + "cell_type": "markdown", + "id": "6eb8cf35-13c1-44ea-981a-17f9676e5c0e", + "metadata": {}, + "source": [ + "c. Calculate the Q value of the reaction" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab2b2b84-59bc-4000-9588-b0c0afbb67ae", + "metadata": {}, + "outputs": [], + "source": [ + "d. Show that the Q value is equal to the change in binding energy" + ] + }, + { + "cell_type": "markdown", + "id": "e8108f30-f807-4f83-90b8-ce1092404284", + "metadata": {}, + "source": [ + "2. Using atomic mass data, compute the average binding energy per nucleon of the following\n", + "nuclei:\n", + "\n", + "a. $^{6}Li$\n", + "\n", + "b. $^{12}C$\n", + "\n", + "c. $^{51}V$\n", + "\n", + "d. $^{138}Ba$\n", + "\n", + "e. $^{235}U$" + ] + }, + { + "cell_type": "markdown", + "id": "df1603d2-3e2c-463f-93eb-bd9aa1514314", + "metadata": {}, + "source": [ + "3. Compute the atom densities of $^{235}U$ and $^{238}U$ in UO2 of physical density 10.8 g/cm3 if the uranium\n", + "is enriched to 3.5 w/o in $^{235}U$." + ] + }, + { + "cell_type": "markdown", + "id": "df698b09-ce8d-4b38-92c7-0d96765e1b25", + "metadata": {}, + "source": [ + "4. Calculate the mean free path of 1-eV neutrons in graphite. The total cross section of carbon at\n", + "this energy is 4.8 b." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/NUCE_2100/Untitled.ipynb b/NUCE_2100/Untitled.ipynb new file mode 100644 index 0000000..53146bb --- /dev/null +++ b/NUCE_2100/Untitled.ipynb @@ -0,0 +1,140 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "153bfedd-a63f-47f7-be65-4d8c006600e4", + "metadata": {}, + "source": [ + "# Homework 2\n", + "## NUCE 2100\n", + "### Dane Sabo\n", + "\n", + "---\n", + "\n", + "Instructions: Complete the problems below being sure to show your work. If you need to lookup nuclear data from an external source please reference the source in your solutions (once is sufficient).\n", + "\n", + "---\n", + "\n", + "1. Consider the so-called DT (deuterium, tritium) fusion reaction\n", + "\n", + "$^2H + ^3H \\rightarrow ^HHe + ?$\n", + "\n", + "a. What is the missing product in the reaction?\n", + "\n", + " A neutron!\n", + "\n", + "b. Calculate the binding energy of $^2H$, $^{3}H$, and $^{4}He$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "88d5e8eb-f0d6-4397-bcda-98c112bc6bc1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2H Binding Energy: -214638011925356.72 mev\n", + "3H Binding Energy: -818368931224944.4 mev\n", + "4He Binding Energy: -2730116383379421.0 mev\n" + ] + } + ], + "source": [ + "def binding_energy(mass,z,n):\n", + " c = 299792458 # m/s\n", + " h1_mass = 1007825.03190 #micro AMU\n", + " neutron_mass = 1008664.9159 #mirco AMU\n", + "\n", + " return (mass - z*h1_mass - n*neutron_mass)/1e6*c**2\n", + "\n", + "twoH_mass = 2014101.77784 #micro AMU\n", + "print(\"2H Binding Energy:\", binding_energy(twoH_mass,1,1), \"mev\")\n", + "\n", + "threeH_mass = 3016049.281328 #micro AMU\n", + "print(\"3H Binding Energy:\", binding_energy(threeH_mass,1,2), \"mev\")\n", + "\n", + "fourHe_mass = 4002603.25413 #micro AMU\n", + "print(\"4He Binding Energy:\", binding_energy(fourHe_mass,2,2), \"mev\")" + ] + }, + { + "cell_type": "markdown", + "id": "6eb8cf35-13c1-44ea-981a-17f9676e5c0e", + "metadata": {}, + "source": [ + "c. Calculate the Q value of the reaction" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab2b2b84-59bc-4000-9588-b0c0afbb67ae", + "metadata": {}, + "outputs": [], + "source": [ + "d. Show that the Q value is equal to the change in binding energy" + ] + }, + { + "cell_type": "markdown", + "id": "e8108f30-f807-4f83-90b8-ce1092404284", + "metadata": {}, + "source": [ + "2. Using atomic mass data, compute the average binding energy per nucleon of the following\n", + "nuclei:\n", + "\n", + "a. $^{6}Li$\n", + "\n", + "b. $^{12}C$\n", + "\n", + "c. $^{51}V$\n", + "\n", + "d. $^{138}Ba$\n", + "\n", + "e. $^{235}U$" + ] + }, + { + "cell_type": "markdown", + "id": "df1603d2-3e2c-463f-93eb-bd9aa1514314", + "metadata": {}, + "source": [ + "3. Compute the atom densities of $^{235}U$ and $^{238}U$ in UO2 of physical density 10.8 g/cm3 if the uranium\n", + "is enriched to 3.5 w/o in $^{235}U$." + ] + }, + { + "cell_type": "markdown", + "id": "df698b09-ce8d-4b38-92c7-0d96765e1b25", + "metadata": {}, + "source": [ + "4. Calculate the mean free path of 1-eV neutrons in graphite. The total cross section of carbon at\n", + "this energy is 4.8 b." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}